Aohui Ouyang , Vanessa Di Murro , Mehdi Daakir , John Andrew Osborne , Zili Li
{"title":"从像素到基础设施:使用深度学习的基于摄影测量的隧道裂缝数字化和记录方法","authors":"Aohui Ouyang , Vanessa Di Murro , Mehdi Daakir , John Andrew Osborne , Zili Li","doi":"10.1016/j.tust.2024.106179","DOIUrl":null,"url":null,"abstract":"<div><div>Crack detection and documentation play a vital role in the asset management of large-scale tunnel complexes. This study proposes a computer vision-based tunnel crack data management method enabling 3D visualization, quantification, and documentation into structured data. The method reconstructs sparse point clouds with Structure from Motion (SfM) and cleans the irrelevant tunnel facilities with a two-stage filtering method. The denoised 3D point clouds are then fitted with customised meshes and textured into 3D reconstruction models. The flat scaled orthomosaic is generated by the cylindrical unrolling. Deep learning methods are employed for pixel-level crack detection in this high-resolution image for the extraction of crack location and quantification.</div><div>Applied to four tunnel sections of CERN, the European Organization for Nuclear Research, the method presents the spatial crack distributions and quantifies crack dimensions. In addition, the original unstructured tunnel image data of 1024 MB / meter is converted to structured tabular data of 0.3 MB / meter. The quantification result provides a crack statistical analysis tool, revealing that the crack length meets the log-normal distribution indicating the inherent fractural characteristic of tunnel linings.</div></div>","PeriodicalId":49414,"journal":{"name":"Tunnelling and Underground Space Technology","volume":"155 ","pages":"Article 106179"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From pixel to infrastructure: Photogrammetry-based tunnel crack digitalization and documentation method using deep learning\",\"authors\":\"Aohui Ouyang , Vanessa Di Murro , Mehdi Daakir , John Andrew Osborne , Zili Li\",\"doi\":\"10.1016/j.tust.2024.106179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Crack detection and documentation play a vital role in the asset management of large-scale tunnel complexes. This study proposes a computer vision-based tunnel crack data management method enabling 3D visualization, quantification, and documentation into structured data. The method reconstructs sparse point clouds with Structure from Motion (SfM) and cleans the irrelevant tunnel facilities with a two-stage filtering method. The denoised 3D point clouds are then fitted with customised meshes and textured into 3D reconstruction models. The flat scaled orthomosaic is generated by the cylindrical unrolling. Deep learning methods are employed for pixel-level crack detection in this high-resolution image for the extraction of crack location and quantification.</div><div>Applied to four tunnel sections of CERN, the European Organization for Nuclear Research, the method presents the spatial crack distributions and quantifies crack dimensions. In addition, the original unstructured tunnel image data of 1024 MB / meter is converted to structured tabular data of 0.3 MB / meter. The quantification result provides a crack statistical analysis tool, revealing that the crack length meets the log-normal distribution indicating the inherent fractural characteristic of tunnel linings.</div></div>\",\"PeriodicalId\":49414,\"journal\":{\"name\":\"Tunnelling and Underground Space Technology\",\"volume\":\"155 \",\"pages\":\"Article 106179\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tunnelling and Underground Space Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0886779824005972\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunnelling and Underground Space Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0886779824005972","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
From pixel to infrastructure: Photogrammetry-based tunnel crack digitalization and documentation method using deep learning
Crack detection and documentation play a vital role in the asset management of large-scale tunnel complexes. This study proposes a computer vision-based tunnel crack data management method enabling 3D visualization, quantification, and documentation into structured data. The method reconstructs sparse point clouds with Structure from Motion (SfM) and cleans the irrelevant tunnel facilities with a two-stage filtering method. The denoised 3D point clouds are then fitted with customised meshes and textured into 3D reconstruction models. The flat scaled orthomosaic is generated by the cylindrical unrolling. Deep learning methods are employed for pixel-level crack detection in this high-resolution image for the extraction of crack location and quantification.
Applied to four tunnel sections of CERN, the European Organization for Nuclear Research, the method presents the spatial crack distributions and quantifies crack dimensions. In addition, the original unstructured tunnel image data of 1024 MB / meter is converted to structured tabular data of 0.3 MB / meter. The quantification result provides a crack statistical analysis tool, revealing that the crack length meets the log-normal distribution indicating the inherent fractural characteristic of tunnel linings.
期刊介绍:
Tunnelling and Underground Space Technology is an international journal which publishes authoritative articles encompassing the development of innovative uses of underground space and the results of high quality research into improved, more cost-effective techniques for the planning, geo-investigation, design, construction, operation and maintenance of underground and earth-sheltered structures. The journal provides an effective vehicle for the improved worldwide exchange of information on developments in underground technology - and the experience gained from its use - and is strongly committed to publishing papers on the interdisciplinary aspects of creating, planning, and regulating underground space.