揭示电解槽特性,揭示太阳能转化为化学能的潜力:连接电化学与光伏学的快速分析方法。

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ChemSusChem Pub Date : 2024-11-15 DOI:10.1002/cssc.202402027
Oleksandr Astakhov, Thérèse Cibaka, Lars Wieprecht, Uwe Rau, Tsvetelina Merdzhanova
{"title":"揭示电解槽特性,揭示太阳能转化为化学能的潜力:连接电化学与光伏学的快速分析方法。","authors":"Oleksandr Astakhov, Thérèse Cibaka, Lars Wieprecht, Uwe Rau, Tsvetelina Merdzhanova","doi":"10.1002/cssc.202402027","DOIUrl":null,"url":null,"abstract":"<p><p>Development of photovoltaic-electrochemical (PV-EC) systems for energy storage and industry decarbonization requires multidisciplinary collaborative efforts of different research groups from both photovoltaic and electrochemical research communities. Consequently, the evaluation of the solar-to-chemical or solar-to-fuel efficiency of a new electrolyzer (EC) as a part of a PV-EC system is a time-consuming task that is challenging in a routine optimization loop. To address this issue, a new rapid assessment method is proposed. This method employs power balance requirements to unfold the input EC characteristics into the parameter space of PV-EC systems. The system parameters, composed with the EC output characteristics, yield the solar-to-chemical efficiency attainable by the electrolyzer in combination with any PV device under any irradiance at any relative PV-to-EC scaling and any mode of power coupling. This comprehensive overview is achieved via a mathematically simple conversion of the EC characteristics in any spreadsheet software. The method, designed to streamline the development and minimize the efforts of both the photovoltaic and electrochemical communities, is demonstrated via the analysis of CO2-reduction electrolyzer characteristics and verified with dedicated PV-EC experiments.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402027"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unfolding Electrolyzer Characteristics to Reveal Solar-to-Chemical Efficiency Potential: Rapid Analysis Method Bridging Electrochemistry and Photovoltaics.\",\"authors\":\"Oleksandr Astakhov, Thérèse Cibaka, Lars Wieprecht, Uwe Rau, Tsvetelina Merdzhanova\",\"doi\":\"10.1002/cssc.202402027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Development of photovoltaic-electrochemical (PV-EC) systems for energy storage and industry decarbonization requires multidisciplinary collaborative efforts of different research groups from both photovoltaic and electrochemical research communities. Consequently, the evaluation of the solar-to-chemical or solar-to-fuel efficiency of a new electrolyzer (EC) as a part of a PV-EC system is a time-consuming task that is challenging in a routine optimization loop. To address this issue, a new rapid assessment method is proposed. This method employs power balance requirements to unfold the input EC characteristics into the parameter space of PV-EC systems. The system parameters, composed with the EC output characteristics, yield the solar-to-chemical efficiency attainable by the electrolyzer in combination with any PV device under any irradiance at any relative PV-to-EC scaling and any mode of power coupling. This comprehensive overview is achieved via a mathematically simple conversion of the EC characteristics in any spreadsheet software. The method, designed to streamline the development and minimize the efforts of both the photovoltaic and electrochemical communities, is demonstrated via the analysis of CO2-reduction electrolyzer characteristics and verified with dedicated PV-EC experiments.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202402027\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202402027\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202402027","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

开发用于储能和工业脱碳的光伏-电化学(PV-EC)系统需要光伏和电化学研究界不同研究小组的多学科合作。因此,评估作为 PV-EC 系统一部分的新型电解槽(EC)的太阳能转化为化学能或太阳能转化为燃料的效率是一项耗时的任务,在常规优化循环中具有挑战性。为解决这一问题,我们提出了一种新的快速评估方法。该方法利用功率平衡要求,将输入的 EC 特性展开到 PV-EC 系统的参数空间中。系统参数与电解槽输出特性相结合,可得出电解槽与任何光伏设备在任何辐照度、任何光伏-电解槽相对比例和任何功率耦合模式下可达到的太阳能-化学效率。通过在任何电子表格软件中对电解槽特性进行简单的数学转换,即可实现这一全面概述。该方法通过分析二氧化碳还原电解槽的特性进行了演示,并通过专门的光伏-电解槽实验进行了验证,旨在简化光伏和电化学领域的开发流程并最大限度地减少工作量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unfolding Electrolyzer Characteristics to Reveal Solar-to-Chemical Efficiency Potential: Rapid Analysis Method Bridging Electrochemistry and Photovoltaics.

Development of photovoltaic-electrochemical (PV-EC) systems for energy storage and industry decarbonization requires multidisciplinary collaborative efforts of different research groups from both photovoltaic and electrochemical research communities. Consequently, the evaluation of the solar-to-chemical or solar-to-fuel efficiency of a new electrolyzer (EC) as a part of a PV-EC system is a time-consuming task that is challenging in a routine optimization loop. To address this issue, a new rapid assessment method is proposed. This method employs power balance requirements to unfold the input EC characteristics into the parameter space of PV-EC systems. The system parameters, composed with the EC output characteristics, yield the solar-to-chemical efficiency attainable by the electrolyzer in combination with any PV device under any irradiance at any relative PV-to-EC scaling and any mode of power coupling. This comprehensive overview is achieved via a mathematically simple conversion of the EC characteristics in any spreadsheet software. The method, designed to streamline the development and minimize the efforts of both the photovoltaic and electrochemical communities, is demonstrated via the analysis of CO2-reduction electrolyzer characteristics and verified with dedicated PV-EC experiments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
期刊最新文献
Green Electrochemical Point-of-Care Devices: Transient Materials and Sustainable Fabrication Methods. Metal-free N, P-Codoped Carbon for Syngas Production with Tunable Composition via CO2 Electrolysis: Addressing the Competition Between CO2 Reduction and H2 Evolution. Polymer Networks Assembled by Ruthenium Catalysts for Enhanced Water Splitting Performance in Calixarene Dye-Sensitized Photoelectrochemical Cells. A Solid Electrolyte Based on Sodium-doped Li4-xNaxTi5O12 with PVDF for Solid State Lithium Metal Battery. Cascade Catalytic Systems for Converting CO2 into C2+ Products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1