Sébastien Molière, Dimitri Hamzaoui, Guillaume Ploussard, Romain Mathieu, Gaelle Fiard, Michael Baboudjian, Benjamin Granger, Morgan Roupret, Hervé Delingette, Raphaele Renard-Penna
{"title":"深度学习模型在磁共振成像中对有临床意义的前列腺癌进行自动检测、定位和定性的诊断准确性系统性综述》。","authors":"Sébastien Molière, Dimitri Hamzaoui, Guillaume Ploussard, Romain Mathieu, Gaelle Fiard, Michael Baboudjian, Benjamin Granger, Morgan Roupret, Hervé Delingette, Raphaele Renard-Penna","doi":"10.1016/j.euo.2024.11.001","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objective: </strong>Magnetic resonance imaging (MRI) plays a critical role in prostate cancer diagnosis, but is limited by variability in interpretation and diagnostic accuracy. This systematic review evaluates the current state of deep learning (DL) models in enhancing the automatic detection, localization, and characterization of clinically significant prostate cancer (csPCa) on MRI.</p><p><strong>Methods: </strong>A systematic search was conducted across Medline/PubMed, Embase, Web of Science, and ScienceDirect for studies published between January 2020 and September 2023. Studies were included if these presented and validated fully automated DL models for csPCa detection on MRI, with pathology confirmation. Study quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool and the Checklist for Artificial Intelligence in Medical Imaging.</p><p><strong>Key findings and limitations: </strong>Twenty-five studies met the inclusion criteria, showing promising results in detecting and characterizing csPCa. However, significant heterogeneity in study designs, validation strategies, and datasets complicates direct comparisons. Only one-third of studies performed external validation, highlighting a critical gap in generalizability. The reliance on internal validation limits a broader application of these findings, and the lack of standardized methodologies hinders the integration of DL models into clinical practice.</p><p><strong>Conclusions and clinical implications: </strong>DL models demonstrate significant potential in improving prostate cancer diagnostics on MRI. However, challenges in validation, generalizability, and clinical implementation must be addressed. Future research should focus on standardizing methodologies, ensuring external validation and conducting prospective clinical trials to facilitate the adoption of artificial intelligence (AI) in routine clinical settings. These findings support the cautious integration of AI into clinical practice, with further studies needed to confirm their efficacy in diverse clinical environments.</p><p><strong>Patient summary: </strong>In this study, we reviewed how artificial intelligence (AI) models can help doctors better detect and understand aggressive prostate cancer using magnetic resonance imaging scans. We found that while these AI tools show promise, these tools need more testing and validation in different hospitals before these can be used widely in patient care.</p>","PeriodicalId":12256,"journal":{"name":"European urology oncology","volume":" ","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Systematic Review of the Diagnostic Accuracy of Deep Learning Models for the Automatic Detection, Localization, and Characterization of Clinically Significant Prostate Cancer on Magnetic Resonance Imaging.\",\"authors\":\"Sébastien Molière, Dimitri Hamzaoui, Guillaume Ploussard, Romain Mathieu, Gaelle Fiard, Michael Baboudjian, Benjamin Granger, Morgan Roupret, Hervé Delingette, Raphaele Renard-Penna\",\"doi\":\"10.1016/j.euo.2024.11.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and objective: </strong>Magnetic resonance imaging (MRI) plays a critical role in prostate cancer diagnosis, but is limited by variability in interpretation and diagnostic accuracy. This systematic review evaluates the current state of deep learning (DL) models in enhancing the automatic detection, localization, and characterization of clinically significant prostate cancer (csPCa) on MRI.</p><p><strong>Methods: </strong>A systematic search was conducted across Medline/PubMed, Embase, Web of Science, and ScienceDirect for studies published between January 2020 and September 2023. Studies were included if these presented and validated fully automated DL models for csPCa detection on MRI, with pathology confirmation. Study quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool and the Checklist for Artificial Intelligence in Medical Imaging.</p><p><strong>Key findings and limitations: </strong>Twenty-five studies met the inclusion criteria, showing promising results in detecting and characterizing csPCa. However, significant heterogeneity in study designs, validation strategies, and datasets complicates direct comparisons. Only one-third of studies performed external validation, highlighting a critical gap in generalizability. The reliance on internal validation limits a broader application of these findings, and the lack of standardized methodologies hinders the integration of DL models into clinical practice.</p><p><strong>Conclusions and clinical implications: </strong>DL models demonstrate significant potential in improving prostate cancer diagnostics on MRI. However, challenges in validation, generalizability, and clinical implementation must be addressed. Future research should focus on standardizing methodologies, ensuring external validation and conducting prospective clinical trials to facilitate the adoption of artificial intelligence (AI) in routine clinical settings. These findings support the cautious integration of AI into clinical practice, with further studies needed to confirm their efficacy in diverse clinical environments.</p><p><strong>Patient summary: </strong>In this study, we reviewed how artificial intelligence (AI) models can help doctors better detect and understand aggressive prostate cancer using magnetic resonance imaging scans. We found that while these AI tools show promise, these tools need more testing and validation in different hospitals before these can be used widely in patient care.</p>\",\"PeriodicalId\":12256,\"journal\":{\"name\":\"European urology oncology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European urology oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.euo.2024.11.001\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European urology oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.euo.2024.11.001","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
A Systematic Review of the Diagnostic Accuracy of Deep Learning Models for the Automatic Detection, Localization, and Characterization of Clinically Significant Prostate Cancer on Magnetic Resonance Imaging.
Background and objective: Magnetic resonance imaging (MRI) plays a critical role in prostate cancer diagnosis, but is limited by variability in interpretation and diagnostic accuracy. This systematic review evaluates the current state of deep learning (DL) models in enhancing the automatic detection, localization, and characterization of clinically significant prostate cancer (csPCa) on MRI.
Methods: A systematic search was conducted across Medline/PubMed, Embase, Web of Science, and ScienceDirect for studies published between January 2020 and September 2023. Studies were included if these presented and validated fully automated DL models for csPCa detection on MRI, with pathology confirmation. Study quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool and the Checklist for Artificial Intelligence in Medical Imaging.
Key findings and limitations: Twenty-five studies met the inclusion criteria, showing promising results in detecting and characterizing csPCa. However, significant heterogeneity in study designs, validation strategies, and datasets complicates direct comparisons. Only one-third of studies performed external validation, highlighting a critical gap in generalizability. The reliance on internal validation limits a broader application of these findings, and the lack of standardized methodologies hinders the integration of DL models into clinical practice.
Conclusions and clinical implications: DL models demonstrate significant potential in improving prostate cancer diagnostics on MRI. However, challenges in validation, generalizability, and clinical implementation must be addressed. Future research should focus on standardizing methodologies, ensuring external validation and conducting prospective clinical trials to facilitate the adoption of artificial intelligence (AI) in routine clinical settings. These findings support the cautious integration of AI into clinical practice, with further studies needed to confirm their efficacy in diverse clinical environments.
Patient summary: In this study, we reviewed how artificial intelligence (AI) models can help doctors better detect and understand aggressive prostate cancer using magnetic resonance imaging scans. We found that while these AI tools show promise, these tools need more testing and validation in different hospitals before these can be used widely in patient care.
期刊介绍:
Journal Name: European Urology Oncology
Affiliation: Official Journal of the European Association of Urology
Focus:
First official publication of the EAU fully devoted to the study of genitourinary malignancies
Aims to deliver high-quality research
Content:
Includes original articles, opinion piece editorials, and invited reviews
Covers clinical, basic, and translational research
Publication Frequency: Six times a year in electronic format