{"title":"了解听力损失中与年龄相关的中耳特性和基底膜损伤:有限元分析和回顾性队列研究。","authors":"Tzu-Ching Shih , You-Cheng Yu , Tang-Chuan Wang","doi":"10.1016/j.compbiomed.2024.109376","DOIUrl":null,"url":null,"abstract":"<div><div>Age-related hearing loss (ARHL) is primarily attributed to inner-ear factors, yet the role of age-related middle ear characteristics remains elusive. Employing a finite element (FE) model, we conducted a comparative analysis with clinical data extracted from a retrospective cohort study involving 90 younger adults (mean age = 38.1 ± 7.7) and 111 older adults (mean age = 63.8 ± 8.4). The clinical dataset encompassed air-bone gap (ABG) measurements obtained through pure-tone audiometry (PTA) at frequencies of 0.5, 1.0, 2.0, and 4.0 kHz. FE results quantified the normalized stapes displacement value of the simulated form of air-bone gap (<span><math><mrow><mtext>ABGSim</mtext></mrow></math></span>) between the two age groups. The Mann-Whitney <em>U</em> test, with a significance threshold set at <em>P</em> < 0.05, was employed for statistical analysis. Furthermore, the study employs simulated auditory risk unit (ARU) results to evaluate basilar membrane (BM) damage. A significant intergroup discrepancy surfaces at 1.0 kHz (<span><math><mrow><mtext>ABGSim</mtext></mrow></math></span> = 1.0; ABG: <em>P</em> = 0.008), with pronounced BM damage occurring within the speech frequency range (0.5–4.0 kHz) among older adults. The ARU consistently localizes within the 3–18 mm region from the base for both age groups. In conclusion, older adults exhibited significant conductive hearing loss (CHL) at 1.0 kHz but demonstrated a modest enhancement in middle ear sound transmission efficiency at 2.0 kHz. Furthermore, our research indicates that aging exacerbates damage to the BM when exposed to speech frequency excitation exceeding 90 dB sound pressure level (dB SPL).</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"184 ","pages":"Article 109376"},"PeriodicalIF":7.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding age-related middle ear properties and basilar membrane damage in hearing loss: A finite element analysis and retrospective cohort study\",\"authors\":\"Tzu-Ching Shih , You-Cheng Yu , Tang-Chuan Wang\",\"doi\":\"10.1016/j.compbiomed.2024.109376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Age-related hearing loss (ARHL) is primarily attributed to inner-ear factors, yet the role of age-related middle ear characteristics remains elusive. Employing a finite element (FE) model, we conducted a comparative analysis with clinical data extracted from a retrospective cohort study involving 90 younger adults (mean age = 38.1 ± 7.7) and 111 older adults (mean age = 63.8 ± 8.4). The clinical dataset encompassed air-bone gap (ABG) measurements obtained through pure-tone audiometry (PTA) at frequencies of 0.5, 1.0, 2.0, and 4.0 kHz. FE results quantified the normalized stapes displacement value of the simulated form of air-bone gap (<span><math><mrow><mtext>ABGSim</mtext></mrow></math></span>) between the two age groups. The Mann-Whitney <em>U</em> test, with a significance threshold set at <em>P</em> < 0.05, was employed for statistical analysis. Furthermore, the study employs simulated auditory risk unit (ARU) results to evaluate basilar membrane (BM) damage. A significant intergroup discrepancy surfaces at 1.0 kHz (<span><math><mrow><mtext>ABGSim</mtext></mrow></math></span> = 1.0; ABG: <em>P</em> = 0.008), with pronounced BM damage occurring within the speech frequency range (0.5–4.0 kHz) among older adults. The ARU consistently localizes within the 3–18 mm region from the base for both age groups. In conclusion, older adults exhibited significant conductive hearing loss (CHL) at 1.0 kHz but demonstrated a modest enhancement in middle ear sound transmission efficiency at 2.0 kHz. Furthermore, our research indicates that aging exacerbates damage to the BM when exposed to speech frequency excitation exceeding 90 dB sound pressure level (dB SPL).</div></div>\",\"PeriodicalId\":10578,\"journal\":{\"name\":\"Computers in biology and medicine\",\"volume\":\"184 \",\"pages\":\"Article 109376\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in biology and medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010482524014616\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482524014616","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Understanding age-related middle ear properties and basilar membrane damage in hearing loss: A finite element analysis and retrospective cohort study
Age-related hearing loss (ARHL) is primarily attributed to inner-ear factors, yet the role of age-related middle ear characteristics remains elusive. Employing a finite element (FE) model, we conducted a comparative analysis with clinical data extracted from a retrospective cohort study involving 90 younger adults (mean age = 38.1 ± 7.7) and 111 older adults (mean age = 63.8 ± 8.4). The clinical dataset encompassed air-bone gap (ABG) measurements obtained through pure-tone audiometry (PTA) at frequencies of 0.5, 1.0, 2.0, and 4.0 kHz. FE results quantified the normalized stapes displacement value of the simulated form of air-bone gap () between the two age groups. The Mann-Whitney U test, with a significance threshold set at P < 0.05, was employed for statistical analysis. Furthermore, the study employs simulated auditory risk unit (ARU) results to evaluate basilar membrane (BM) damage. A significant intergroup discrepancy surfaces at 1.0 kHz ( = 1.0; ABG: P = 0.008), with pronounced BM damage occurring within the speech frequency range (0.5–4.0 kHz) among older adults. The ARU consistently localizes within the 3–18 mm region from the base for both age groups. In conclusion, older adults exhibited significant conductive hearing loss (CHL) at 1.0 kHz but demonstrated a modest enhancement in middle ear sound transmission efficiency at 2.0 kHz. Furthermore, our research indicates that aging exacerbates damage to the BM when exposed to speech frequency excitation exceeding 90 dB sound pressure level (dB SPL).
期刊介绍:
Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.