{"title":"微管和肌动蛋白细胞骨架对细胞内直接负荷的结构反应。","authors":"Ryota Orii, Hirokazu Tanimoto","doi":"10.1083/jcb.202403136","DOIUrl":null,"url":null,"abstract":"<p><p>Microtubule and actin are the two major cytoskeletal polymers that form organized functional structures in the interior of eukaryotic cells. Although the structural mechanics of the cytoskeleton has been extensively studied by direct manipulations in in vitro reconstitution systems, such unambiguous characterizations inside the living cell are sparse. Here, we report a comprehensive analysis of how the microtubule and actin cytoskeletons structurally respond to direct intracellular load. Ferrofluid-based intracellular magnetic tweezers reveal rheological properties of the microtubule complex primarily determined by filamentous actin. The strain fields of the microtubule complex and actin meshwork follow the same scaling, suggesting that the two cytoskeletal systems behave as an integrated elastic body. The structural responses of single microtubules to contact and remote forces further evidence that the individual microtubules are enclosed by the elastic medium of actin. These results, directly characterizing the microtubule and actin cytoskeletons as an interacting continuum throughout the cytoplasm, serve as a cornerstone for the physical understanding of intracellular organization.</p>","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":null,"pages":null},"PeriodicalIF":7.4000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural response of microtubule and actin cytoskeletons to direct intracellular load.\",\"authors\":\"Ryota Orii, Hirokazu Tanimoto\",\"doi\":\"10.1083/jcb.202403136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microtubule and actin are the two major cytoskeletal polymers that form organized functional structures in the interior of eukaryotic cells. Although the structural mechanics of the cytoskeleton has been extensively studied by direct manipulations in in vitro reconstitution systems, such unambiguous characterizations inside the living cell are sparse. Here, we report a comprehensive analysis of how the microtubule and actin cytoskeletons structurally respond to direct intracellular load. Ferrofluid-based intracellular magnetic tweezers reveal rheological properties of the microtubule complex primarily determined by filamentous actin. The strain fields of the microtubule complex and actin meshwork follow the same scaling, suggesting that the two cytoskeletal systems behave as an integrated elastic body. The structural responses of single microtubules to contact and remote forces further evidence that the individual microtubules are enclosed by the elastic medium of actin. These results, directly characterizing the microtubule and actin cytoskeletons as an interacting continuum throughout the cytoplasm, serve as a cornerstone for the physical understanding of intracellular organization.</p>\",\"PeriodicalId\":15211,\"journal\":{\"name\":\"Journal of Cell Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1083/jcb.202403136\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1083/jcb.202403136","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Structural response of microtubule and actin cytoskeletons to direct intracellular load.
Microtubule and actin are the two major cytoskeletal polymers that form organized functional structures in the interior of eukaryotic cells. Although the structural mechanics of the cytoskeleton has been extensively studied by direct manipulations in in vitro reconstitution systems, such unambiguous characterizations inside the living cell are sparse. Here, we report a comprehensive analysis of how the microtubule and actin cytoskeletons structurally respond to direct intracellular load. Ferrofluid-based intracellular magnetic tweezers reveal rheological properties of the microtubule complex primarily determined by filamentous actin. The strain fields of the microtubule complex and actin meshwork follow the same scaling, suggesting that the two cytoskeletal systems behave as an integrated elastic body. The structural responses of single microtubules to contact and remote forces further evidence that the individual microtubules are enclosed by the elastic medium of actin. These results, directly characterizing the microtubule and actin cytoskeletons as an interacting continuum throughout the cytoplasm, serve as a cornerstone for the physical understanding of intracellular organization.
期刊介绍:
The Journal of Cell Biology (JCB) is a comprehensive journal dedicated to publishing original discoveries across all realms of cell biology. We invite papers presenting novel cellular or molecular advancements in various domains of basic cell biology, along with applied cell biology research in diverse systems such as immunology, neurobiology, metabolism, virology, developmental biology, and plant biology. We enthusiastically welcome submissions showcasing significant findings of interest to cell biologists, irrespective of the experimental approach.