丹参素钠通过 miR-200a-3p/MEKK3/NF-κB 信号通路抑制动脉粥样硬化中巨噬细胞的炎症反应

IF 4.6 2区 医学 Q1 NEUROSCIENCES Molecular Neurobiology Pub Date : 2024-11-15 DOI:10.1007/s12035-024-04626-2
Xiaolu Zhang, Yilin Zhang, Miao Zeng, Qun Yu, Jiali Gan, Yijing Wang, Xijuan Jiang
{"title":"丹参素钠通过 miR-200a-3p/MEKK3/NF-κB 信号通路抑制动脉粥样硬化中巨噬细胞的炎症反应","authors":"Xiaolu Zhang, Yilin Zhang, Miao Zeng, Qun Yu, Jiali Gan, Yijing Wang, Xijuan Jiang","doi":"10.1007/s12035-024-04626-2","DOIUrl":null,"url":null,"abstract":"<p><p>Macrophages are fundamental cellular components of atherosclerotic plaques, and inhibition of macrophage inflammation can delay the development of atherosclerotic plaques. Sodium danshensu (SDSS) can inhibit inflammatory responses and thus delay atherosclerosis, but the specific mechanism remains unclear. The effect of SDSS in inhibiting atherosclerosis was confirmed by observing and detecting atherosclerotic plaque area, morphology and lipid levels in the aorta. The mechanism by which SDSS attenuated atherosclerotic plaques was elucidated by in vivo and in vitro detection of inflammation-related mRNA and protein expression. In addition, bioinformatics analysis, RT-qPCR and dual-luciferase assays were used to predict and validate the potential miRNAs of SDSS to attenuate atherosclerosis. miR-200a-2p mimic and inhibitor were then compared for their effects on the efficacy of SDSS. SDSS inhibited atherosclerotic plaque formation and suppressed the expression of MEKK3, TNF-α, and IL-1β as well as nuclear factor-κB (NF-κB) phosphorylation and nuclear translocation to attenuate inflammatory responses. Bioinformatic predictions combined with RT-qPCR results and dual-luciferase assays indicated that miR-200a-3p negatively regulated MEKK3 expression by directly targeting the 3'UTR region of MEKK3, thereby blocking MEKK3. Further studies showed that miR-200a-3p inhibitor, but not miR-200a-3p mimic, reversed the beneficial effects of SDSS on inflammation. SDSS inhibited macrophage inflammation by modulating the miR-200a-3p/MEKK3/NF-κB signaling pathway.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sodium Danshensu Inhibits Macrophage Inflammation in Atherosclerosis via the miR-200a-3p/MEKK3/NF-κB Signaling Pathway.\",\"authors\":\"Xiaolu Zhang, Yilin Zhang, Miao Zeng, Qun Yu, Jiali Gan, Yijing Wang, Xijuan Jiang\",\"doi\":\"10.1007/s12035-024-04626-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Macrophages are fundamental cellular components of atherosclerotic plaques, and inhibition of macrophage inflammation can delay the development of atherosclerotic plaques. Sodium danshensu (SDSS) can inhibit inflammatory responses and thus delay atherosclerosis, but the specific mechanism remains unclear. The effect of SDSS in inhibiting atherosclerosis was confirmed by observing and detecting atherosclerotic plaque area, morphology and lipid levels in the aorta. The mechanism by which SDSS attenuated atherosclerotic plaques was elucidated by in vivo and in vitro detection of inflammation-related mRNA and protein expression. In addition, bioinformatics analysis, RT-qPCR and dual-luciferase assays were used to predict and validate the potential miRNAs of SDSS to attenuate atherosclerosis. miR-200a-2p mimic and inhibitor were then compared for their effects on the efficacy of SDSS. SDSS inhibited atherosclerotic plaque formation and suppressed the expression of MEKK3, TNF-α, and IL-1β as well as nuclear factor-κB (NF-κB) phosphorylation and nuclear translocation to attenuate inflammatory responses. Bioinformatic predictions combined with RT-qPCR results and dual-luciferase assays indicated that miR-200a-3p negatively regulated MEKK3 expression by directly targeting the 3'UTR region of MEKK3, thereby blocking MEKK3. Further studies showed that miR-200a-3p inhibitor, but not miR-200a-3p mimic, reversed the beneficial effects of SDSS on inflammation. SDSS inhibited macrophage inflammation by modulating the miR-200a-3p/MEKK3/NF-κB signaling pathway.</p>\",\"PeriodicalId\":18762,\"journal\":{\"name\":\"Molecular Neurobiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12035-024-04626-2\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-024-04626-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

巨噬细胞是动脉粥样硬化斑块的基本细胞成分,抑制巨噬细胞的炎症反应可以延缓动脉粥样硬化斑块的发展。丹参素钠(SDSS)可以抑制炎症反应,从而延缓动脉粥样硬化,但其具体机制尚不清楚。通过观察和检测主动脉中动脉粥样硬化斑块的面积、形态和脂质水平,证实了丹参素钠抑制动脉粥样硬化的作用。通过体内和体外检测炎症相关 mRNA 和蛋白质的表达,阐明了 SDSS 减轻动脉粥样硬化斑块的机制。此外,研究人员还利用生物信息学分析、RT-qPCR和双荧光素酶测定法预测和验证了SDSS可能用于减轻动脉粥样硬化的miRNA,并比较了miR-200a-2p模拟物和抑制剂对SDSS疗效的影响。SDSS抑制了动脉粥样硬化斑块的形成,并抑制了MEKK3、TNF-α和IL-1β的表达以及核因子-κB(NF-κB)的磷酸化和核转位,从而减轻了炎症反应。生物信息学预测结合 RT-qPCR 结果和双荧光素酶检测表明,miR-200a-3p 通过直接靶向 MEKK3 的 3'UTR 区域负向调节 MEKK3 的表达,从而阻断 MEKK3。进一步的研究表明,miR-200a-3p 抑制剂(而不是 miR-200a-3p 模拟物)逆转了 SDSS 对炎症的有益影响。SDSS通过调节miR-200a-3p/MEKK3/NF-κB信号通路抑制巨噬细胞炎症。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sodium Danshensu Inhibits Macrophage Inflammation in Atherosclerosis via the miR-200a-3p/MEKK3/NF-κB Signaling Pathway.

Macrophages are fundamental cellular components of atherosclerotic plaques, and inhibition of macrophage inflammation can delay the development of atherosclerotic plaques. Sodium danshensu (SDSS) can inhibit inflammatory responses and thus delay atherosclerosis, but the specific mechanism remains unclear. The effect of SDSS in inhibiting atherosclerosis was confirmed by observing and detecting atherosclerotic plaque area, morphology and lipid levels in the aorta. The mechanism by which SDSS attenuated atherosclerotic plaques was elucidated by in vivo and in vitro detection of inflammation-related mRNA and protein expression. In addition, bioinformatics analysis, RT-qPCR and dual-luciferase assays were used to predict and validate the potential miRNAs of SDSS to attenuate atherosclerosis. miR-200a-2p mimic and inhibitor were then compared for their effects on the efficacy of SDSS. SDSS inhibited atherosclerotic plaque formation and suppressed the expression of MEKK3, TNF-α, and IL-1β as well as nuclear factor-κB (NF-κB) phosphorylation and nuclear translocation to attenuate inflammatory responses. Bioinformatic predictions combined with RT-qPCR results and dual-luciferase assays indicated that miR-200a-3p negatively regulated MEKK3 expression by directly targeting the 3'UTR region of MEKK3, thereby blocking MEKK3. Further studies showed that miR-200a-3p inhibitor, but not miR-200a-3p mimic, reversed the beneficial effects of SDSS on inflammation. SDSS inhibited macrophage inflammation by modulating the miR-200a-3p/MEKK3/NF-κB signaling pathway.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Neurobiology
Molecular Neurobiology 医学-神经科学
CiteScore
9.00
自引率
2.00%
发文量
480
审稿时长
1 months
期刊介绍: Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.
期刊最新文献
Retraction Note to: Learning Impairments, Memory Deficits, and Neuropathology in Aged Tau Transgenic Mice Are Dependent on Leukotrienes Biosynthesis: Role of the cdk5 Kinase Pathway. Retraction Note to: LPS Pretreatment Provides Neuroprotective Roles in Rats with Subarachnoid Hemorrhage by Downregulating MMP9 and Caspase3 Associated with TLR4 Signaling Activation. Retraction Note to: Rapamycin Augments Immunomodulatory Properties of Bone Marrow-Derived Mesenchymal Stem Cells in Experimental Autoimmune Encephalomyelitis. The Role of Gut Microbiota in Blood-Brain Barrier Disruption after Stroke. Abnormal Changes of IL3/IL3R and Its Downstream Signaling Pathways in the Prion-Infected Cell Line and in the Brains of Scrapie-Infected Rodents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1