微核糖核酸 miR-152 可防止甲苯对卵巢细胞的毒性作用

IF 1.9 4区 医学 Q3 PHYSIOLOGY Physiological research Pub Date : 2024-11-15
A Sirotkin, Z Fabová, B Loncová, K Popovičová, M Bauer, A Harrath
{"title":"微核糖核酸 miR-152 可防止甲苯对卵巢细胞的毒性作用","authors":"A Sirotkin, Z Fabová, B Loncová, K Popovičová, M Bauer, A Harrath","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The potential of microRNAs to protect the female reproductive system from the toxic influence of oil-related environmental contaminants has not yet been examined. The aim of the present study was to examine the ability of the microRNA miR-152 to prevent the toxic effects of toluene on ovarian cells. Porcine ovarian granulosa cells transfected or not transfected with miR-152 mimics were cultured with or without toluene (0, 10 and 100 ng/ml). The expression of miR-152; cell viability; proliferation (accumulation of PCNA, cyclin B1 and BrdU); cytoplasmic/mitochondrial apoptosis (accumulation of bax and caspase 3); and release of progesterone, testosterone and estradiol were quantified via RT-qPCR, the Trypan blue exclusion test, quantitative immunocytochemistry, the BrdU assay and ELISA. The addition of toluene reduced cell viability, decreased the levels of all the measured markers of proliferation and the release of all the measured steroid hormones, and promoted the expression of apoptosis markers. Transfection of cells with miR-152 mimics increased the expression of miR-152, cell proliferation, and progesterone release but reduced apoptosis and the release of testosterone and estradiol. Moreover, miR-152 prevented or inhibited all the toluene effects in addition to its inhibitory effect on testosterone and estradiol release. The present results demonstrate that miR-152 can protect ovarian cells from the harmful influence of toluene.</p>","PeriodicalId":20235,"journal":{"name":"Physiological research","volume":"73 5","pages":"791-799"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Toxic Effect of Toluene on Ovarian Cells Can Be Prevented by the MicroRNA miR-152.\",\"authors\":\"A Sirotkin, Z Fabová, B Loncová, K Popovičová, M Bauer, A Harrath\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The potential of microRNAs to protect the female reproductive system from the toxic influence of oil-related environmental contaminants has not yet been examined. The aim of the present study was to examine the ability of the microRNA miR-152 to prevent the toxic effects of toluene on ovarian cells. Porcine ovarian granulosa cells transfected or not transfected with miR-152 mimics were cultured with or without toluene (0, 10 and 100 ng/ml). The expression of miR-152; cell viability; proliferation (accumulation of PCNA, cyclin B1 and BrdU); cytoplasmic/mitochondrial apoptosis (accumulation of bax and caspase 3); and release of progesterone, testosterone and estradiol were quantified via RT-qPCR, the Trypan blue exclusion test, quantitative immunocytochemistry, the BrdU assay and ELISA. The addition of toluene reduced cell viability, decreased the levels of all the measured markers of proliferation and the release of all the measured steroid hormones, and promoted the expression of apoptosis markers. Transfection of cells with miR-152 mimics increased the expression of miR-152, cell proliferation, and progesterone release but reduced apoptosis and the release of testosterone and estradiol. Moreover, miR-152 prevented or inhibited all the toluene effects in addition to its inhibitory effect on testosterone and estradiol release. The present results demonstrate that miR-152 can protect ovarian cells from the harmful influence of toluene.</p>\",\"PeriodicalId\":20235,\"journal\":{\"name\":\"Physiological research\",\"volume\":\"73 5\",\"pages\":\"791-799\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological research","FirstCategoryId":"3","ListUrlMain":"","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目前尚未研究微RNA保护女性生殖系统免受石油相关环境污染物毒性影响的潜力。本研究的目的是检测微RNA miR-152防止甲苯对卵巢细胞毒性作用的能力。用或不用甲苯(0、10 和 100 ng/ml)培养转染或未转染 miR-152 模拟物的猪卵巢颗粒细胞。通过 RT-qPCR、胰蓝排除试验、定量免疫细胞化学、BrdU 试验和酶联免疫吸附试验,对 miR-152 的表达、细胞活力、增殖(PCNA、细胞周期蛋白 B1 和 BrdU 的积累)、细胞质/半胱氨酸凋亡(bax 和 caspase 3 的积累)以及孕酮、睾酮和雌二醇的释放进行了定量分析。加入甲苯会降低细胞活力,降低所有测定的增殖标志物水平和所有测定的类固醇激素释放水平,并促进细胞凋亡标志物的表达。用 miR-152 模拟物转染细胞可增加 miR-152 的表达、细胞增殖和孕酮的释放,但会减少细胞凋亡以及睾酮和雌二醇的释放。此外,miR-152 除了抑制睾酮和雌二醇的释放外,还能防止或抑制甲苯的所有效应。本研究结果表明,miR-152 能保护卵巢细胞免受甲苯的有害影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Toxic Effect of Toluene on Ovarian Cells Can Be Prevented by the MicroRNA miR-152.

The potential of microRNAs to protect the female reproductive system from the toxic influence of oil-related environmental contaminants has not yet been examined. The aim of the present study was to examine the ability of the microRNA miR-152 to prevent the toxic effects of toluene on ovarian cells. Porcine ovarian granulosa cells transfected or not transfected with miR-152 mimics were cultured with or without toluene (0, 10 and 100 ng/ml). The expression of miR-152; cell viability; proliferation (accumulation of PCNA, cyclin B1 and BrdU); cytoplasmic/mitochondrial apoptosis (accumulation of bax and caspase 3); and release of progesterone, testosterone and estradiol were quantified via RT-qPCR, the Trypan blue exclusion test, quantitative immunocytochemistry, the BrdU assay and ELISA. The addition of toluene reduced cell viability, decreased the levels of all the measured markers of proliferation and the release of all the measured steroid hormones, and promoted the expression of apoptosis markers. Transfection of cells with miR-152 mimics increased the expression of miR-152, cell proliferation, and progesterone release but reduced apoptosis and the release of testosterone and estradiol. Moreover, miR-152 prevented or inhibited all the toluene effects in addition to its inhibitory effect on testosterone and estradiol release. The present results demonstrate that miR-152 can protect ovarian cells from the harmful influence of toluene.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physiological research
Physiological research 医学-生理学
CiteScore
4.00
自引率
4.80%
发文量
108
审稿时长
3 months
期刊介绍: Physiological Research is a peer reviewed Open Access journal that publishes articles on normal and pathological physiology, biochemistry, biophysics, and pharmacology. Authors can submit original, previously unpublished research articles, review articles, rapid or short communications. Instructions for Authors - Respect the instructions carefully when submitting your manuscript. Submitted manuscripts or revised manuscripts that do not follow these Instructions will not be included into the peer-review process. The articles are available in full versions as pdf files beginning with volume 40, 1991. The journal publishes the online Ahead of Print /Pre-Press version of the articles that are searchable in Medline and can be cited.
期刊最新文献
Influence of Hypoxia on the Airway Epithelium. Long-Term Adverse Effects of Perinatal Hypoxia on the Adult Pulmonary Circulation Vary Between Males and Females in a Murine Model. Does Hypoxia Prompt Fetal Brain-Sparing in the Absence of Fetal Growth Restriction? Gut Microbiome and Pulmonary Arterial Hypertension - A Novel and Evolving Paradigm. Hypoxic Pulmonary Vasoconstriction: An Important Component of the Homeostatic Oxygen Sensing System.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1