A Sirotkin, Z Fabová, B Loncová, K Popovičová, M Bauer, A Harrath
{"title":"微核糖核酸 miR-152 可防止甲苯对卵巢细胞的毒性作用","authors":"A Sirotkin, Z Fabová, B Loncová, K Popovičová, M Bauer, A Harrath","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The potential of microRNAs to protect the female reproductive system from the toxic influence of oil-related environmental contaminants has not yet been examined. The aim of the present study was to examine the ability of the microRNA miR-152 to prevent the toxic effects of toluene on ovarian cells. Porcine ovarian granulosa cells transfected or not transfected with miR-152 mimics were cultured with or without toluene (0, 10 and 100 ng/ml). The expression of miR-152; cell viability; proliferation (accumulation of PCNA, cyclin B1 and BrdU); cytoplasmic/mitochondrial apoptosis (accumulation of bax and caspase 3); and release of progesterone, testosterone and estradiol were quantified via RT-qPCR, the Trypan blue exclusion test, quantitative immunocytochemistry, the BrdU assay and ELISA. The addition of toluene reduced cell viability, decreased the levels of all the measured markers of proliferation and the release of all the measured steroid hormones, and promoted the expression of apoptosis markers. Transfection of cells with miR-152 mimics increased the expression of miR-152, cell proliferation, and progesterone release but reduced apoptosis and the release of testosterone and estradiol. Moreover, miR-152 prevented or inhibited all the toluene effects in addition to its inhibitory effect on testosterone and estradiol release. The present results demonstrate that miR-152 can protect ovarian cells from the harmful influence of toluene.</p>","PeriodicalId":20235,"journal":{"name":"Physiological research","volume":"73 5","pages":"791-799"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Toxic Effect of Toluene on Ovarian Cells Can Be Prevented by the MicroRNA miR-152.\",\"authors\":\"A Sirotkin, Z Fabová, B Loncová, K Popovičová, M Bauer, A Harrath\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The potential of microRNAs to protect the female reproductive system from the toxic influence of oil-related environmental contaminants has not yet been examined. The aim of the present study was to examine the ability of the microRNA miR-152 to prevent the toxic effects of toluene on ovarian cells. Porcine ovarian granulosa cells transfected or not transfected with miR-152 mimics were cultured with or without toluene (0, 10 and 100 ng/ml). The expression of miR-152; cell viability; proliferation (accumulation of PCNA, cyclin B1 and BrdU); cytoplasmic/mitochondrial apoptosis (accumulation of bax and caspase 3); and release of progesterone, testosterone and estradiol were quantified via RT-qPCR, the Trypan blue exclusion test, quantitative immunocytochemistry, the BrdU assay and ELISA. The addition of toluene reduced cell viability, decreased the levels of all the measured markers of proliferation and the release of all the measured steroid hormones, and promoted the expression of apoptosis markers. Transfection of cells with miR-152 mimics increased the expression of miR-152, cell proliferation, and progesterone release but reduced apoptosis and the release of testosterone and estradiol. Moreover, miR-152 prevented or inhibited all the toluene effects in addition to its inhibitory effect on testosterone and estradiol release. The present results demonstrate that miR-152 can protect ovarian cells from the harmful influence of toluene.</p>\",\"PeriodicalId\":20235,\"journal\":{\"name\":\"Physiological research\",\"volume\":\"73 5\",\"pages\":\"791-799\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological research","FirstCategoryId":"3","ListUrlMain":"","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
The Toxic Effect of Toluene on Ovarian Cells Can Be Prevented by the MicroRNA miR-152.
The potential of microRNAs to protect the female reproductive system from the toxic influence of oil-related environmental contaminants has not yet been examined. The aim of the present study was to examine the ability of the microRNA miR-152 to prevent the toxic effects of toluene on ovarian cells. Porcine ovarian granulosa cells transfected or not transfected with miR-152 mimics were cultured with or without toluene (0, 10 and 100 ng/ml). The expression of miR-152; cell viability; proliferation (accumulation of PCNA, cyclin B1 and BrdU); cytoplasmic/mitochondrial apoptosis (accumulation of bax and caspase 3); and release of progesterone, testosterone and estradiol were quantified via RT-qPCR, the Trypan blue exclusion test, quantitative immunocytochemistry, the BrdU assay and ELISA. The addition of toluene reduced cell viability, decreased the levels of all the measured markers of proliferation and the release of all the measured steroid hormones, and promoted the expression of apoptosis markers. Transfection of cells with miR-152 mimics increased the expression of miR-152, cell proliferation, and progesterone release but reduced apoptosis and the release of testosterone and estradiol. Moreover, miR-152 prevented or inhibited all the toluene effects in addition to its inhibitory effect on testosterone and estradiol release. The present results demonstrate that miR-152 can protect ovarian cells from the harmful influence of toluene.
期刊介绍:
Physiological Research is a peer reviewed Open Access journal that publishes articles on normal and pathological physiology, biochemistry, biophysics, and pharmacology.
Authors can submit original, previously unpublished research articles, review articles, rapid or short communications.
Instructions for Authors - Respect the instructions carefully when submitting your manuscript. Submitted manuscripts or revised manuscripts that do not follow these Instructions will not be included into the peer-review process.
The articles are available in full versions as pdf files beginning with volume 40, 1991.
The journal publishes the online Ahead of Print /Pre-Press version of the articles that are searchable in Medline and can be cited.