ALR-HT:无需调整超参数的快速高效 Lasso 回归。

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Networks Pub Date : 2024-11-12 DOI:10.1016/j.neunet.2024.106885
Yuhang Wang , Bin Zou , Jie Xu , Chen Xu , Yuan Yan Tang
{"title":"ALR-HT:无需调整超参数的快速高效 Lasso 回归。","authors":"Yuhang Wang ,&nbsp;Bin Zou ,&nbsp;Jie Xu ,&nbsp;Chen Xu ,&nbsp;Yuan Yan Tang","doi":"10.1016/j.neunet.2024.106885","DOIUrl":null,"url":null,"abstract":"<div><div>Lasso regression, known for its efficacy in high-dimensional data analysis and feature selection, stands as a cornerstone in the realm of supervised learning for regression estimation. However, hyperparameter tuning for Lasso regression is often time-consuming and susceptible to noisy data in big data scenarios. In this paper we introduce a new additive Lasso regression without Hyperparameter Tuning (ALR-HT) by integrating Markov resampling with additive models. We estimate the generalization bounds of the proposed ALR-HT and establish the fast learning rate. The experimental results for benchmark datasets confirm that the proposed ALR-HT algorithm has better performance in terms of sampling and training total time, mean squared error (MSE) compared to other algorithms. We present some discussions on the ALR-HT algorithm and apply it to Ridge regression, to show its versatility and effectiveness in regularized regression scenarios.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"181 ","pages":"Article 106885"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ALR-HT: A fast and efficient Lasso regression without hyperparameter tuning\",\"authors\":\"Yuhang Wang ,&nbsp;Bin Zou ,&nbsp;Jie Xu ,&nbsp;Chen Xu ,&nbsp;Yuan Yan Tang\",\"doi\":\"10.1016/j.neunet.2024.106885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lasso regression, known for its efficacy in high-dimensional data analysis and feature selection, stands as a cornerstone in the realm of supervised learning for regression estimation. However, hyperparameter tuning for Lasso regression is often time-consuming and susceptible to noisy data in big data scenarios. In this paper we introduce a new additive Lasso regression without Hyperparameter Tuning (ALR-HT) by integrating Markov resampling with additive models. We estimate the generalization bounds of the proposed ALR-HT and establish the fast learning rate. The experimental results for benchmark datasets confirm that the proposed ALR-HT algorithm has better performance in terms of sampling and training total time, mean squared error (MSE) compared to other algorithms. We present some discussions on the ALR-HT algorithm and apply it to Ridge regression, to show its versatility and effectiveness in regularized regression scenarios.</div></div>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":\"181 \",\"pages\":\"Article 106885\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893608024008141\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608024008141","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

Lasso 回归因其在高维数据分析和特征选择方面的功效而闻名,是回归估计监督学习领域的基石。然而,Lasso 回归的超参数调整往往非常耗时,而且在大数据场景中容易受到噪声数据的影响。本文通过将马尔可夫重采样与加法模型相结合,介绍了一种新的无超参数调整的加法拉索回归(ALR-HT)。我们估计了所提出的 ALR-HT 的泛化边界,并建立了快速学习率。基准数据集的实验结果证实,与其他算法相比,所提出的 ALR-HT 算法在采样和训练总时间、均方误差(MSE)方面具有更好的性能。我们对 ALR-HT 算法进行了一些讨论,并将其应用于岭回归,以展示其在正则化回归场景中的通用性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ALR-HT: A fast and efficient Lasso regression without hyperparameter tuning
Lasso regression, known for its efficacy in high-dimensional data analysis and feature selection, stands as a cornerstone in the realm of supervised learning for regression estimation. However, hyperparameter tuning for Lasso regression is often time-consuming and susceptible to noisy data in big data scenarios. In this paper we introduce a new additive Lasso regression without Hyperparameter Tuning (ALR-HT) by integrating Markov resampling with additive models. We estimate the generalization bounds of the proposed ALR-HT and establish the fast learning rate. The experimental results for benchmark datasets confirm that the proposed ALR-HT algorithm has better performance in terms of sampling and training total time, mean squared error (MSE) compared to other algorithms. We present some discussions on the ALR-HT algorithm and apply it to Ridge regression, to show its versatility and effectiveness in regularized regression scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
期刊最新文献
Multi-source Selective Graph Domain Adaptation Network for cross-subject EEG emotion recognition. Spectral integrated neural networks (SINNs) for solving forward and inverse dynamic problems. Corrigendum to "Hydra: Multi-head Low-rank Adaptation for Parameter Efficient Fine-tuning" [Neural Networks Volume 178, October (2024), 1-11/106414]]. MIU-Net: Advanced multi-scale feature extraction and imbalance mitigation for optic disc segmentation Recovering Permuted Sequential Features for effective Reinforcement Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1