Florian Bösch , Stina Schild-Suhren , Elif Yilmaz , Michael Ghadimi , Athanasios Karampalis , Nikolaus Börner , Markus Bo Schoenberg
{"title":"经机器学习调整的连续 CUSUM 分析优于手术后超额死亡率的横断面分析。","authors":"Florian Bösch , Stina Schild-Suhren , Elif Yilmaz , Michael Ghadimi , Athanasios Karampalis , Nikolaus Börner , Markus Bo Schoenberg","doi":"10.1016/j.ijmedinf.2024.105684","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>The assessment of clinical outcome quality, particularly in surgery, is crucial for healthcare improvement. Traditional cross-sectional analyses often fall short in timely and systematic identification of clinical quality issues. This study explores the efficacy of machine learning adjusted sequential CUSUM (Cumulative Sum) analyses in monitoring post-surgical mortality.</div></div><div><h3>Material and methods</h3><div>Utilizing the Global Open Source Severity of Illness Score (GOSSIS) dataset involving 91,714 patient records from 147 hospitals, this study involved the development of a machine learning model for mortality using a modified LightGBM algorithm. With this, sequential and cross sectional quality monitoring was simulated and compared.</div></div><div><h3>Results</h3><div>The modified LightGBM model demonstrated superior predictive accuracy (ROC AUC of 0.88). Simulations revealed that the AI risk-adjusted CUSUM required fewer patient outcome alterations to detect atypical trends compared to standard methods.</div></div><div><h3>Conclusion</h3><div>The AI risk-adjusted CUSUM analysis represents a significant advancement in monitoring clinical outcome quality in healthcare, especially in surgery. Its ability to detect minor discrepancies in mortality rates with greater sensitivity and specificity positions it as a valuable tool for healthcare providers. This approach could lead to earlier interventions and improved patient care.</div></div>","PeriodicalId":54950,"journal":{"name":"International Journal of Medical Informatics","volume":"193 ","pages":"Article 105684"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning adjusted sequential CUSUM-analyses are superior to cross-sectional analysis of excess mortality after surgery\",\"authors\":\"Florian Bösch , Stina Schild-Suhren , Elif Yilmaz , Michael Ghadimi , Athanasios Karampalis , Nikolaus Börner , Markus Bo Schoenberg\",\"doi\":\"10.1016/j.ijmedinf.2024.105684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>The assessment of clinical outcome quality, particularly in surgery, is crucial for healthcare improvement. Traditional cross-sectional analyses often fall short in timely and systematic identification of clinical quality issues. This study explores the efficacy of machine learning adjusted sequential CUSUM (Cumulative Sum) analyses in monitoring post-surgical mortality.</div></div><div><h3>Material and methods</h3><div>Utilizing the Global Open Source Severity of Illness Score (GOSSIS) dataset involving 91,714 patient records from 147 hospitals, this study involved the development of a machine learning model for mortality using a modified LightGBM algorithm. With this, sequential and cross sectional quality monitoring was simulated and compared.</div></div><div><h3>Results</h3><div>The modified LightGBM model demonstrated superior predictive accuracy (ROC AUC of 0.88). Simulations revealed that the AI risk-adjusted CUSUM required fewer patient outcome alterations to detect atypical trends compared to standard methods.</div></div><div><h3>Conclusion</h3><div>The AI risk-adjusted CUSUM analysis represents a significant advancement in monitoring clinical outcome quality in healthcare, especially in surgery. Its ability to detect minor discrepancies in mortality rates with greater sensitivity and specificity positions it as a valuable tool for healthcare providers. This approach could lead to earlier interventions and improved patient care.</div></div>\",\"PeriodicalId\":54950,\"journal\":{\"name\":\"International Journal of Medical Informatics\",\"volume\":\"193 \",\"pages\":\"Article 105684\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Medical Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386505624003472\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386505624003472","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Machine learning adjusted sequential CUSUM-analyses are superior to cross-sectional analysis of excess mortality after surgery
Background
The assessment of clinical outcome quality, particularly in surgery, is crucial for healthcare improvement. Traditional cross-sectional analyses often fall short in timely and systematic identification of clinical quality issues. This study explores the efficacy of machine learning adjusted sequential CUSUM (Cumulative Sum) analyses in monitoring post-surgical mortality.
Material and methods
Utilizing the Global Open Source Severity of Illness Score (GOSSIS) dataset involving 91,714 patient records from 147 hospitals, this study involved the development of a machine learning model for mortality using a modified LightGBM algorithm. With this, sequential and cross sectional quality monitoring was simulated and compared.
Results
The modified LightGBM model demonstrated superior predictive accuracy (ROC AUC of 0.88). Simulations revealed that the AI risk-adjusted CUSUM required fewer patient outcome alterations to detect atypical trends compared to standard methods.
Conclusion
The AI risk-adjusted CUSUM analysis represents a significant advancement in monitoring clinical outcome quality in healthcare, especially in surgery. Its ability to detect minor discrepancies in mortality rates with greater sensitivity and specificity positions it as a valuable tool for healthcare providers. This approach could lead to earlier interventions and improved patient care.
期刊介绍:
International Journal of Medical Informatics provides an international medium for dissemination of original results and interpretative reviews concerning the field of medical informatics. The Journal emphasizes the evaluation of systems in healthcare settings.
The scope of journal covers:
Information systems, including national or international registration systems, hospital information systems, departmental and/or physician''s office systems, document handling systems, electronic medical record systems, standardization, systems integration etc.;
Computer-aided medical decision support systems using heuristic, algorithmic and/or statistical methods as exemplified in decision theory, protocol development, artificial intelligence, etc.
Educational computer based programs pertaining to medical informatics or medicine in general;
Organizational, economic, social, clinical impact, ethical and cost-benefit aspects of IT applications in health care.