用于空间转录组学分析的基于信号扩散的无监督对比表征学习。

Nan Chen, Xiao Yu, Weimin Li, Fangfang Liu, Yin Luo, Zhongkun Zuo
{"title":"用于空间转录组学分析的基于信号扩散的无监督对比表征学习。","authors":"Nan Chen, Xiao Yu, Weimin Li, Fangfang Liu, Yin Luo, Zhongkun Zuo","doi":"10.1093/bioinformatics/btae663","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Spatial transcriptomics allows for the measurement of high-throughput gene expression data while preserving the spatial structure of tissues and histological images. Integrating gene expression, spatial information, and image data to learn discriminative low-dimensional representations is critical for dissecting tissue heterogeneity and analyzing biological functions. However, most existing methods have limitations in effectively utilizing spatial information and high-resolution histological images. We propose a signal-diffusion-based unsupervised contrast learning method (SDUCL) for learning low-dimensional latent embeddings of cells/spots.</p><p><strong>Results: </strong>SDUCL integrates image features, spatial relationships and gene expression information. We designed a signal diffusion microenvironment discovery algorithm, which effectively captures and integrates interaction information within the cellular microenvironment by simulating the biological signal diffusion process. By maximizing the mutual information between the local representation and the microenvironment representation of cells/spots, SDUCL learns more discriminative representations. SDUCL was employed to analyze spatial transcriptomics datasets from multiple species, encompassing both normal and tumor tissues. SDUCL performed well in downstream tasks such as clustering, visualization, trajectory inference, and differential gene analysis, thereby enhancing our understanding of tissue structure and tumor microenvironments.</p><p><strong>Availability: </strong>https://github.com/WeiMin-Li-visual/SDUCL.</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A signal-diffusion-based unsupervised contrastive representation learning for spatial transcriptomics analysis.\",\"authors\":\"Nan Chen, Xiao Yu, Weimin Li, Fangfang Liu, Yin Luo, Zhongkun Zuo\",\"doi\":\"10.1093/bioinformatics/btae663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Spatial transcriptomics allows for the measurement of high-throughput gene expression data while preserving the spatial structure of tissues and histological images. Integrating gene expression, spatial information, and image data to learn discriminative low-dimensional representations is critical for dissecting tissue heterogeneity and analyzing biological functions. However, most existing methods have limitations in effectively utilizing spatial information and high-resolution histological images. We propose a signal-diffusion-based unsupervised contrast learning method (SDUCL) for learning low-dimensional latent embeddings of cells/spots.</p><p><strong>Results: </strong>SDUCL integrates image features, spatial relationships and gene expression information. We designed a signal diffusion microenvironment discovery algorithm, which effectively captures and integrates interaction information within the cellular microenvironment by simulating the biological signal diffusion process. By maximizing the mutual information between the local representation and the microenvironment representation of cells/spots, SDUCL learns more discriminative representations. SDUCL was employed to analyze spatial transcriptomics datasets from multiple species, encompassing both normal and tumor tissues. SDUCL performed well in downstream tasks such as clustering, visualization, trajectory inference, and differential gene analysis, thereby enhancing our understanding of tissue structure and tumor microenvironments.</p><p><strong>Availability: </strong>https://github.com/WeiMin-Li-visual/SDUCL.</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>\",\"PeriodicalId\":93899,\"journal\":{\"name\":\"Bioinformatics (Oxford, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btae663\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动机空间转录组学可以测量高通量基因表达数据,同时保留组织和组织学图像的空间结构。整合基因表达、空间信息和图像数据以学习具有区分性的低维表征对于剖析组织异质性和分析生物功能至关重要。然而,大多数现有方法在有效利用空间信息和高分辨率组织学图像方面存在局限性。我们提出了一种基于信号扩散的无监督对比学习方法(SDUCL),用于学习细胞/斑点的低维潜在嵌入:SDUCL整合了图像特征、空间关系和基因表达信息。我们设计了一种信号扩散微环境发现算法,该算法通过模拟生物信号扩散过程,有效捕捉并整合了细胞微环境中的交互信息。通过最大化细胞/斑点的局部表征与微环境表征之间的互信息,SDUCL 可以学习到更多具有区分性的表征。SDUCL 被用于分析多个物种的空间转录组学数据集,包括正常组织和肿瘤组织。SDUCL在聚类、可视化、轨迹推断和差异基因分析等下游任务中表现出色,从而增强了我们对组织结构和肿瘤微环境的了解。可用性:https://github.com/WeiMin-Li-visual/SDUCL.Supplementary 信息:补充数据可在 Bioinformatics online 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A signal-diffusion-based unsupervised contrastive representation learning for spatial transcriptomics analysis.

Motivation: Spatial transcriptomics allows for the measurement of high-throughput gene expression data while preserving the spatial structure of tissues and histological images. Integrating gene expression, spatial information, and image data to learn discriminative low-dimensional representations is critical for dissecting tissue heterogeneity and analyzing biological functions. However, most existing methods have limitations in effectively utilizing spatial information and high-resolution histological images. We propose a signal-diffusion-based unsupervised contrast learning method (SDUCL) for learning low-dimensional latent embeddings of cells/spots.

Results: SDUCL integrates image features, spatial relationships and gene expression information. We designed a signal diffusion microenvironment discovery algorithm, which effectively captures and integrates interaction information within the cellular microenvironment by simulating the biological signal diffusion process. By maximizing the mutual information between the local representation and the microenvironment representation of cells/spots, SDUCL learns more discriminative representations. SDUCL was employed to analyze spatial transcriptomics datasets from multiple species, encompassing both normal and tumor tissues. SDUCL performed well in downstream tasks such as clustering, visualization, trajectory inference, and differential gene analysis, thereby enhancing our understanding of tissue structure and tumor microenvironments.

Availability: https://github.com/WeiMin-Li-visual/SDUCL.

Supplementary information: Supplementary data are available at Bioinformatics online.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RUCova: Removal of Unwanted Covariance in mass cytometry data. ViraLM: Empowering Virus Discovery through the Genome Foundation Model. CVR-BBI: An Open-Source VR Platform for Multi-User Collaborative Brain to Brain Interfaces. Expert-guided protein Language Models enable accurate and blazingly fast fitness prediction. FungiFun3: Systemic gene set enrichment analysis for fungal species.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1