利用 NMF 和 GAN 协同作用优化多指标数据推算。

Md Istiaq Ansari, Khandakar Tanvir Ahmed, Wei Zhang
{"title":"利用 NMF 和 GAN 协同作用优化多指标数据推算。","authors":"Md Istiaq Ansari, Khandakar Tanvir Ahmed, Wei Zhang","doi":"10.1093/bioinformatics/btae674","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Integrating multiple omics datasets can significantly advance our understanding of disease mechanisms, physiology, and treatment responses. However, a major challenge in multi-omics studies is the disparity in sample sizes across different datasets, which can introduce bias and reduce statistical power. To address this issue, we propose a novel framework, OmicsNMF, designed to impute missing omics data and enhance disease phenotype prediction. OmicsNMF integrates Generative Adversarial Networks (GANs) with Non-Negative Matrix Factorization (NMF). NMF is a well-established method for uncovering underlying patterns in omics data, while GANs enhance the imputation process by generating realistic data samples. This synergy aims to more effectively address sample size disparity, thereby improving data integration and prediction accuracy.</p><p><strong>Results: </strong>For evaluation, we focused on predicting breast cancer subtypes using the imputed data generated by our proposed framework, OmicsNMF. Our results indicate that OmicsNMF consistently outperforms baseline methods. We further assessed the quality of the imputed data through survival analysis, revealing that the imputed omics profiles provide significant prognostic power for both overall survival and disease-free status. Overall, OmicsNMF effectively leverages GANs and NMF to impute missing samples while preserving key biological features. This approach shows potential for advancing precision oncology by improving data integration and analysis.</p><p><strong>Availability and implementation: </strong>Source code is available at: https://github.com/compbiolabucf/OmicsNMF.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing multi-omics data imputation with NMF and GAN synergy.\",\"authors\":\"Md Istiaq Ansari, Khandakar Tanvir Ahmed, Wei Zhang\",\"doi\":\"10.1093/bioinformatics/btae674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Integrating multiple omics datasets can significantly advance our understanding of disease mechanisms, physiology, and treatment responses. However, a major challenge in multi-omics studies is the disparity in sample sizes across different datasets, which can introduce bias and reduce statistical power. To address this issue, we propose a novel framework, OmicsNMF, designed to impute missing omics data and enhance disease phenotype prediction. OmicsNMF integrates Generative Adversarial Networks (GANs) with Non-Negative Matrix Factorization (NMF). NMF is a well-established method for uncovering underlying patterns in omics data, while GANs enhance the imputation process by generating realistic data samples. This synergy aims to more effectively address sample size disparity, thereby improving data integration and prediction accuracy.</p><p><strong>Results: </strong>For evaluation, we focused on predicting breast cancer subtypes using the imputed data generated by our proposed framework, OmicsNMF. Our results indicate that OmicsNMF consistently outperforms baseline methods. We further assessed the quality of the imputed data through survival analysis, revealing that the imputed omics profiles provide significant prognostic power for both overall survival and disease-free status. Overall, OmicsNMF effectively leverages GANs and NMF to impute missing samples while preserving key biological features. This approach shows potential for advancing precision oncology by improving data integration and analysis.</p><p><strong>Availability and implementation: </strong>Source code is available at: https://github.com/compbiolabucf/OmicsNMF.</p>\",\"PeriodicalId\":93899,\"journal\":{\"name\":\"Bioinformatics (Oxford, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btae674\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动机整合多个组学数据集能极大地促进我们对疾病机制、生理学和治疗反应的理解。然而,多组学研究的一个主要挑战是不同数据集之间样本量的差异,这会带来偏差并降低统计能力。为了解决这个问题,我们提出了一个新颖的框架--OmicsNMF,旨在弥补缺失的组学数据并增强疾病表型预测。OmicsNMF 将生成对抗网络(GAN)与非负矩阵因式分解(NMF)相结合。非负矩阵因式分解(NMF)是一种行之有效的方法,用于揭示 omics 数据中的潜在模式,而 GANs 则通过生成真实的数据样本来增强估算过程。这种协同作用旨在更有效地解决样本大小差异问题,从而提高数据整合和预测准确性:为了进行评估,我们重点使用我们提出的框架 OmicsNMF 生成的估算数据预测乳腺癌亚型。结果表明,OmicsNMF 始终优于基准方法。我们通过生存分析进一步评估了估算数据的质量,结果显示估算的多组学特征为总生存期和无病状态提供了显著的预后能力。总之,OmicsNMF 有效地利用了 GANs 和 NMF 来估算缺失样本,同时保留了关键的生物学特征。这种方法通过改进数据整合和分析,显示出推进精准肿瘤学的潜力:源代码可在以下网址获取:https://github.com/compbiolabucf/OmicsNMF.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing multi-omics data imputation with NMF and GAN synergy.

Motivation: Integrating multiple omics datasets can significantly advance our understanding of disease mechanisms, physiology, and treatment responses. However, a major challenge in multi-omics studies is the disparity in sample sizes across different datasets, which can introduce bias and reduce statistical power. To address this issue, we propose a novel framework, OmicsNMF, designed to impute missing omics data and enhance disease phenotype prediction. OmicsNMF integrates Generative Adversarial Networks (GANs) with Non-Negative Matrix Factorization (NMF). NMF is a well-established method for uncovering underlying patterns in omics data, while GANs enhance the imputation process by generating realistic data samples. This synergy aims to more effectively address sample size disparity, thereby improving data integration and prediction accuracy.

Results: For evaluation, we focused on predicting breast cancer subtypes using the imputed data generated by our proposed framework, OmicsNMF. Our results indicate that OmicsNMF consistently outperforms baseline methods. We further assessed the quality of the imputed data through survival analysis, revealing that the imputed omics profiles provide significant prognostic power for both overall survival and disease-free status. Overall, OmicsNMF effectively leverages GANs and NMF to impute missing samples while preserving key biological features. This approach shows potential for advancing precision oncology by improving data integration and analysis.

Availability and implementation: Source code is available at: https://github.com/compbiolabucf/OmicsNMF.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Phasing Nanopore genome assembly by integrating heterozygous variations and Hi-C data. STRprofiler: efficient comparisons of short tandem repeat profiles for biomedical model authentication. Virtual Tissue Expression Analysis. Fast Polypharmacy Side Effect Prediction Using Tensor Factorisation. Lefser: Implementation of metagenomic biomarker discovery tool, LEfSe, in R.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1