Nathan J. Gesmundo*, Alexander J. Rago, Jonathon M. Young, Sebastian Keess and Ying Wang*,
{"title":"光速:在药物化学研究中系统实施光氧化交叉偶联反应","authors":"Nathan J. Gesmundo*, Alexander J. Rago, Jonathon M. Young, Sebastian Keess and Ying Wang*, ","doi":"10.1021/acs.joc.3c0235110.1021/acs.joc.3c02351","DOIUrl":null,"url":null,"abstract":"<p >The adoption of new and emerging techniques in organic synthesis is essential to promote innovation in drug discovery. In this Perspective, we detail the strategy we used for the systematic deployment of photoredox-mediated, metal-catalyzed cross-coupling reactions in AbbVie’s medicinal chemistry organization, focusing on topics such as assessment, evaluation, implementation, and accessibility. The comprehensive evaluation of photoredox reaction setups and published methods will be discussed, along with internal efforts to build expertise and photoredox high-throughput experimentation capabilities. We also highlight AbbVie’s academic–industry collaborations in this field that have been leveraged to develop new synthetic strategies, along with discussing the internal adoption of photoredox cross-coupling reactions. The work described herein has culminated in robust photocatalysis and cross-coupling capabilities which are viewed as key platforms for medicinal chemistry research at AbbVie.</p>","PeriodicalId":57,"journal":{"name":"The Journal of Organic Chemistry","volume":"89 22","pages":"16070–16092 16070–16092"},"PeriodicalIF":3.3000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"At the Speed of Light: The Systematic Implementation of Photoredox Cross-Coupling Reactions for Medicinal Chemistry Research\",\"authors\":\"Nathan J. Gesmundo*, Alexander J. Rago, Jonathon M. Young, Sebastian Keess and Ying Wang*, \",\"doi\":\"10.1021/acs.joc.3c0235110.1021/acs.joc.3c02351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The adoption of new and emerging techniques in organic synthesis is essential to promote innovation in drug discovery. In this Perspective, we detail the strategy we used for the systematic deployment of photoredox-mediated, metal-catalyzed cross-coupling reactions in AbbVie’s medicinal chemistry organization, focusing on topics such as assessment, evaluation, implementation, and accessibility. The comprehensive evaluation of photoredox reaction setups and published methods will be discussed, along with internal efforts to build expertise and photoredox high-throughput experimentation capabilities. We also highlight AbbVie’s academic–industry collaborations in this field that have been leveraged to develop new synthetic strategies, along with discussing the internal adoption of photoredox cross-coupling reactions. The work described herein has culminated in robust photocatalysis and cross-coupling capabilities which are viewed as key platforms for medicinal chemistry research at AbbVie.</p>\",\"PeriodicalId\":57,\"journal\":{\"name\":\"The Journal of Organic Chemistry\",\"volume\":\"89 22\",\"pages\":\"16070–16092 16070–16092\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Organic Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.joc.3c02351\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Organic Chemistry","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.joc.3c02351","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
At the Speed of Light: The Systematic Implementation of Photoredox Cross-Coupling Reactions for Medicinal Chemistry Research
The adoption of new and emerging techniques in organic synthesis is essential to promote innovation in drug discovery. In this Perspective, we detail the strategy we used for the systematic deployment of photoredox-mediated, metal-catalyzed cross-coupling reactions in AbbVie’s medicinal chemistry organization, focusing on topics such as assessment, evaluation, implementation, and accessibility. The comprehensive evaluation of photoredox reaction setups and published methods will be discussed, along with internal efforts to build expertise and photoredox high-throughput experimentation capabilities. We also highlight AbbVie’s academic–industry collaborations in this field that have been leveraged to develop new synthetic strategies, along with discussing the internal adoption of photoredox cross-coupling reactions. The work described herein has culminated in robust photocatalysis and cross-coupling capabilities which are viewed as key platforms for medicinal chemistry research at AbbVie.
期刊介绍:
The Journal of Organic Chemistry welcomes original contributions of fundamental research in all branches of the theory and practice of organic chemistry. In selecting manuscripts for publication, the editors place emphasis on the quality and novelty of the work, as well as the breadth of interest to the organic chemistry community.