利用高通量人体气道微生理系统预测SARS-CoV-2药物疗效的临床结果(生物学进展 11/2024)

IF 3.2 3区 生物学 Q3 MATERIALS SCIENCE, BIOMATERIALS Advanced biology Pub Date : 2024-11-12 DOI:10.1002/adbi.202470111
Landys Lopez Quezada, Felix Mba Medie, Rebeccah J. Luu, Robert B. Gaibler, Elizabeth P. Gabriel, Logan D. Rubio, Thomas J. Mulhern, Elizabeth E. Marr, Jeffrey T. Borenstein, Christine R. Fisher, Ashley L. Gard
{"title":"利用高通量人体气道微生理系统预测SARS-CoV-2药物疗效的临床结果(生物学进展 11/2024)","authors":"Landys Lopez Quezada,&nbsp;Felix Mba Medie,&nbsp;Rebeccah J. Luu,&nbsp;Robert B. Gaibler,&nbsp;Elizabeth P. Gabriel,&nbsp;Logan D. Rubio,&nbsp;Thomas J. Mulhern,&nbsp;Elizabeth E. Marr,&nbsp;Jeffrey T. Borenstein,&nbsp;Christine R. Fisher,&nbsp;Ashley L. Gard","doi":"10.1002/adbi.202470111","DOIUrl":null,"url":null,"abstract":"<p><b>SARS-CoV-2 Drug Efficacy</b></p><p>Rapid identification of effective therapeutics for emerging infectious diseases requires predictive preclinical drug screening tools that are operable at scale in high-containment laboratory environments. In article number 2300511 Ashley L. Gard, Christine R. Fisher, and co-workers at Draper used a high-throughput human airway microphysiological system, PREDICT96-ALI, to evaluate the efficacy of several SARS-CoV-2 interventions and distinguish ineffective lead compounds from clinically efficacious antivirals.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":7234,"journal":{"name":"Advanced biology","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adbi.202470111","citationCount":"0","resultStr":"{\"title\":\"Predicting Clinical Outcomes of SARS-CoV-2 Drug Efficacy with a High-Throughput Human Airway Microphysiological System (Adv. Biology 11/2024)\",\"authors\":\"Landys Lopez Quezada,&nbsp;Felix Mba Medie,&nbsp;Rebeccah J. Luu,&nbsp;Robert B. Gaibler,&nbsp;Elizabeth P. Gabriel,&nbsp;Logan D. Rubio,&nbsp;Thomas J. Mulhern,&nbsp;Elizabeth E. Marr,&nbsp;Jeffrey T. Borenstein,&nbsp;Christine R. Fisher,&nbsp;Ashley L. Gard\",\"doi\":\"10.1002/adbi.202470111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>SARS-CoV-2 Drug Efficacy</b></p><p>Rapid identification of effective therapeutics for emerging infectious diseases requires predictive preclinical drug screening tools that are operable at scale in high-containment laboratory environments. In article number 2300511 Ashley L. Gard, Christine R. Fisher, and co-workers at Draper used a high-throughput human airway microphysiological system, PREDICT96-ALI, to evaluate the efficacy of several SARS-CoV-2 interventions and distinguish ineffective lead compounds from clinically efficacious antivirals.\\n\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":7234,\"journal\":{\"name\":\"Advanced biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adbi.202470111\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adbi.202470111\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adbi.202470111","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

SARS-CoV-2 药物疗效快速确定治疗新发传染病的有效疗法需要能在高封闭性实验室环境中进行大规模操作的预测性临床前药物筛选工具。在文章编号 2300511 中,Ashley L. Gard、Christine R. Fisher 和 Draper 的合作者使用高通量人体气道微生理系统 PREDICT96-ALI 评估了几种 SARS-CoV-2 干预措施的疗效,并区分了无效的先导化合物和临床有效的抗病毒药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting Clinical Outcomes of SARS-CoV-2 Drug Efficacy with a High-Throughput Human Airway Microphysiological System (Adv. Biology 11/2024)

SARS-CoV-2 Drug Efficacy

Rapid identification of effective therapeutics for emerging infectious diseases requires predictive preclinical drug screening tools that are operable at scale in high-containment laboratory environments. In article number 2300511 Ashley L. Gard, Christine R. Fisher, and co-workers at Draper used a high-throughput human airway microphysiological system, PREDICT96-ALI, to evaluate the efficacy of several SARS-CoV-2 interventions and distinguish ineffective lead compounds from clinically efficacious antivirals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced biology
Advanced biology Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
6.60
自引率
0.00%
发文量
130
期刊最新文献
A Novel UBM/SIS Composite Biological Scaffold for 2-Year Abdominal Defect Repairing and Strength Recovery in Canine Model. Advanced 2D Nanomaterials for Phototheranostics of Breast Cancer: A Paradigm Shift. Predicting Clinical Outcomes of SARS-CoV-2 Drug Efficacy with a High-Throughput Human Airway Microphysiological System (Adv. Biology 11/2024) Accurate Identification of Cancer Cells in Complex Pre-Clinical Models Using a Deep-Learning Neural Network: A Transfection-Free Approach (Adv. Biology 11/2024) Masthead: (Adv. Biology 11/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1