YOLOv7-XAI:利用可解释的人工智能进行多类皮肤病变诊断并做出公平决策

IF 3 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Imaging Systems and Technology Pub Date : 2024-11-11 DOI:10.1002/ima.23214
Nirmala Veeramani, Premaladha Jayaraman
{"title":"YOLOv7-XAI:利用可解释的人工智能进行多类皮肤病变诊断并做出公平决策","authors":"Nirmala Veeramani,&nbsp;Premaladha Jayaraman","doi":"10.1002/ima.23214","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Skin cancer, a prevalent and potentially life-threatening condition, demands accurate and timely detection for effective intervention. It is an uncontrolled growth of abnormal cells in the human body. Studies are underway to determine if a skin lesion is benign (non-cancerous) or malignant (cancerous), but the biggest challenge for a doctor is determining the type of skin cancer. As a result, determining the type of tumour is crucial for the right course of treatment. In this study, we introduce a groundbreaking approach to multi-class skin cancer detection by harnessing the power of Explainable Artificial Intelligence (XAI) in conjunction with a customised You Only Look Once (YOLOv7) architecture. Our research focuses on enhancing the YOLOv7 framework to accurately discern 8 different skin cancer classes, including melanoma, basal cell carcinoma, and squamous cell carcinoma. The YOLOv7 model is the robust backbone, enriched with features tailored for precise multi-class classification. Concurrently, integrating XAI elements, Local Interpretable Modal-agnostic Explanations (LIME) and Shapley Additive Explanations (SHAP) ensures transparent decision-making processes, enabling healthcare professionals to interpret and trust the model's predictions. This innovative synergy between YOLOv7 and XAI heralds a new era in interpretability, resulting in high-performance skin cancer diagnostics. The obtained results are 96.8%, 94.2%, 95.6%, and 95.8%, evaluated with popular quantitative metrics such as accuracy, precision, recall, and F1 score, respectively.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"34 6","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"YOLOv7-XAI: Multi-Class Skin Lesion Diagnosis Using Explainable AI With Fair Decision Making\",\"authors\":\"Nirmala Veeramani,&nbsp;Premaladha Jayaraman\",\"doi\":\"10.1002/ima.23214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Skin cancer, a prevalent and potentially life-threatening condition, demands accurate and timely detection for effective intervention. It is an uncontrolled growth of abnormal cells in the human body. Studies are underway to determine if a skin lesion is benign (non-cancerous) or malignant (cancerous), but the biggest challenge for a doctor is determining the type of skin cancer. As a result, determining the type of tumour is crucial for the right course of treatment. In this study, we introduce a groundbreaking approach to multi-class skin cancer detection by harnessing the power of Explainable Artificial Intelligence (XAI) in conjunction with a customised You Only Look Once (YOLOv7) architecture. Our research focuses on enhancing the YOLOv7 framework to accurately discern 8 different skin cancer classes, including melanoma, basal cell carcinoma, and squamous cell carcinoma. The YOLOv7 model is the robust backbone, enriched with features tailored for precise multi-class classification. Concurrently, integrating XAI elements, Local Interpretable Modal-agnostic Explanations (LIME) and Shapley Additive Explanations (SHAP) ensures transparent decision-making processes, enabling healthcare professionals to interpret and trust the model's predictions. This innovative synergy between YOLOv7 and XAI heralds a new era in interpretability, resulting in high-performance skin cancer diagnostics. The obtained results are 96.8%, 94.2%, 95.6%, and 95.8%, evaluated with popular quantitative metrics such as accuracy, precision, recall, and F1 score, respectively.</p>\\n </div>\",\"PeriodicalId\":14027,\"journal\":{\"name\":\"International Journal of Imaging Systems and Technology\",\"volume\":\"34 6\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Imaging Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ima.23214\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.23214","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

皮肤癌是一种普遍存在并可能危及生命的疾病,需要准确及时的检测以进行有效干预。皮肤癌是人体内异常细胞不受控制的生长。目前正在进行研究,以确定皮肤病变是良性(非癌症)还是恶性(癌症),但医生面临的最大挑战是确定皮肤癌的类型。因此,确定肿瘤类型对于正确治疗至关重要。在本研究中,我们利用可解释人工智能(XAI)的强大功能,结合定制的 "只看一眼"(YOLOv7)架构,推出了一种开创性的多类皮肤癌检测方法。我们的研究重点是增强 YOLOv7 框架,以准确分辨 8 种不同的皮肤癌类别,包括黑色素瘤、基底细胞癌和鳞状细胞癌。YOLOv7 模型是稳健的骨干,富含为精确多类分类量身定制的特征。同时,整合 XAI 元素、本地可解释模态诊断解释(LIME)和夏普利加法解释(SHAP)可确保决策过程透明,使医疗保健专业人员能够解释和信任模型的预测。YOLOv7 和 XAI 之间的这种创新协同作用预示着可解释性的新时代即将到来,从而带来高性能的皮肤癌诊断。根据准确率、精确度、召回率和 F1 分数等常用量化指标进行评估,结果分别为 96.8%、94.2%、95.6% 和 95.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
YOLOv7-XAI: Multi-Class Skin Lesion Diagnosis Using Explainable AI With Fair Decision Making

Skin cancer, a prevalent and potentially life-threatening condition, demands accurate and timely detection for effective intervention. It is an uncontrolled growth of abnormal cells in the human body. Studies are underway to determine if a skin lesion is benign (non-cancerous) or malignant (cancerous), but the biggest challenge for a doctor is determining the type of skin cancer. As a result, determining the type of tumour is crucial for the right course of treatment. In this study, we introduce a groundbreaking approach to multi-class skin cancer detection by harnessing the power of Explainable Artificial Intelligence (XAI) in conjunction with a customised You Only Look Once (YOLOv7) architecture. Our research focuses on enhancing the YOLOv7 framework to accurately discern 8 different skin cancer classes, including melanoma, basal cell carcinoma, and squamous cell carcinoma. The YOLOv7 model is the robust backbone, enriched with features tailored for precise multi-class classification. Concurrently, integrating XAI elements, Local Interpretable Modal-agnostic Explanations (LIME) and Shapley Additive Explanations (SHAP) ensures transparent decision-making processes, enabling healthcare professionals to interpret and trust the model's predictions. This innovative synergy between YOLOv7 and XAI heralds a new era in interpretability, resulting in high-performance skin cancer diagnostics. The obtained results are 96.8%, 94.2%, 95.6%, and 95.8%, evaluated with popular quantitative metrics such as accuracy, precision, recall, and F1 score, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Imaging Systems and Technology
International Journal of Imaging Systems and Technology 工程技术-成像科学与照相技术
CiteScore
6.90
自引率
6.10%
发文量
138
审稿时长
3 months
期刊介绍: The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals. IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging. The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered. The scope of the journal includes, but is not limited to, the following in the context of biomedical research: Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.; Neuromodulation and brain stimulation techniques such as TMS and tDCS; Software and hardware for imaging, especially related to human and animal health; Image segmentation in normal and clinical populations; Pattern analysis and classification using machine learning techniques; Computational modeling and analysis; Brain connectivity and connectomics; Systems-level characterization of brain function; Neural networks and neurorobotics; Computer vision, based on human/animal physiology; Brain-computer interface (BCI) technology; Big data, databasing and data mining.
期刊最新文献
Predicting the Early Detection of Breast Cancer Using Hybrid Machine Learning Systems and Thermographic Imaging CATNet: A Cross Attention and Texture-Aware Network for Polyp Segmentation VMC-UNet: A Vision Mamba-CNN U-Net for Tumor Segmentation in Breast Ultrasound Image Suppression of the Tissue Component With the Total Least-Squares Algorithm to Improve Second Harmonic Imaging of Ultrasound Contrast Agents Segmentation and Classification of Breast Masses From the Whole Mammography Images Using Transfer Learning and BI-RADS Characteristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1