{"title":"21 世纪北部高纬度地区深层永久冻土碳的命运:基于过程的建模分析","authors":"L. Liu, Q. Zhuang, D. Zhao, J. Wei, D. Zheng","doi":"10.1029/2024EF004996","DOIUrl":null,"url":null,"abstract":"<p>Warming in permafrost regions stimulates carbon (C) release through decomposition, but increasing atmospheric CO<sub>2</sub> and available soil nitrogen enhance plant productivity at the same time. To date, a large uncertainty in the regional C dynamics still remains. Here we use a process-based biogeochemical model by considering C exposure from thawed permafrost and observational data to quantify permafrost C emissions and ecosystem C budget in northern high latitudes in the 21st century. Permafrost degradation will make 119.3 Pg and 251.6 Pg C available for decomposition by 2100 under the Shared Socioeconomic Pathway (SSP)126 and SSP585, respectively. However, only 4–8% of the newly thawed permafrost C is expected to be released into the atmosphere by 2100. Cumulatively, permafrost degradation will reduce ecosystem C stocks by 3.37 Pg and 15.37 Pg under the SSP126 and SSP585, respectively. Additionally, CO<sub>2</sub> fertilization effects would stimulate plant productivity and increase ecosystem C stocks substantially. The combined effects of climate change, CO<sub>2</sub> fertilization, and permafrost degradation on C fluxes are typically more profound than any single factor, emphasizing the intricate interplay between these elements in shaping permafrost C-climate feedbacks. Our study suggests that the majority of the thawed C will remain sequestered in previously frozen layers in this century, posing a significant challenge to climate change mitigation efforts once any process accelerates the decomposition of this huge amount of thawed C.</p>","PeriodicalId":48748,"journal":{"name":"Earths Future","volume":"12 11","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EF004996","citationCount":"0","resultStr":"{\"title\":\"The Fate of Deep Permafrost Carbon in Northern High Latitudes in the 21st Century: A Process-Based Modeling Analysis\",\"authors\":\"L. Liu, Q. Zhuang, D. Zhao, J. Wei, D. Zheng\",\"doi\":\"10.1029/2024EF004996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Warming in permafrost regions stimulates carbon (C) release through decomposition, but increasing atmospheric CO<sub>2</sub> and available soil nitrogen enhance plant productivity at the same time. To date, a large uncertainty in the regional C dynamics still remains. Here we use a process-based biogeochemical model by considering C exposure from thawed permafrost and observational data to quantify permafrost C emissions and ecosystem C budget in northern high latitudes in the 21st century. Permafrost degradation will make 119.3 Pg and 251.6 Pg C available for decomposition by 2100 under the Shared Socioeconomic Pathway (SSP)126 and SSP585, respectively. However, only 4–8% of the newly thawed permafrost C is expected to be released into the atmosphere by 2100. Cumulatively, permafrost degradation will reduce ecosystem C stocks by 3.37 Pg and 15.37 Pg under the SSP126 and SSP585, respectively. Additionally, CO<sub>2</sub> fertilization effects would stimulate plant productivity and increase ecosystem C stocks substantially. The combined effects of climate change, CO<sub>2</sub> fertilization, and permafrost degradation on C fluxes are typically more profound than any single factor, emphasizing the intricate interplay between these elements in shaping permafrost C-climate feedbacks. Our study suggests that the majority of the thawed C will remain sequestered in previously frozen layers in this century, posing a significant challenge to climate change mitigation efforts once any process accelerates the decomposition of this huge amount of thawed C.</p>\",\"PeriodicalId\":48748,\"journal\":{\"name\":\"Earths Future\",\"volume\":\"12 11\",\"pages\":\"\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EF004996\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earths Future\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024EF004996\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earths Future","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EF004996","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
The Fate of Deep Permafrost Carbon in Northern High Latitudes in the 21st Century: A Process-Based Modeling Analysis
Warming in permafrost regions stimulates carbon (C) release through decomposition, but increasing atmospheric CO2 and available soil nitrogen enhance plant productivity at the same time. To date, a large uncertainty in the regional C dynamics still remains. Here we use a process-based biogeochemical model by considering C exposure from thawed permafrost and observational data to quantify permafrost C emissions and ecosystem C budget in northern high latitudes in the 21st century. Permafrost degradation will make 119.3 Pg and 251.6 Pg C available for decomposition by 2100 under the Shared Socioeconomic Pathway (SSP)126 and SSP585, respectively. However, only 4–8% of the newly thawed permafrost C is expected to be released into the atmosphere by 2100. Cumulatively, permafrost degradation will reduce ecosystem C stocks by 3.37 Pg and 15.37 Pg under the SSP126 and SSP585, respectively. Additionally, CO2 fertilization effects would stimulate plant productivity and increase ecosystem C stocks substantially. The combined effects of climate change, CO2 fertilization, and permafrost degradation on C fluxes are typically more profound than any single factor, emphasizing the intricate interplay between these elements in shaping permafrost C-climate feedbacks. Our study suggests that the majority of the thawed C will remain sequestered in previously frozen layers in this century, posing a significant challenge to climate change mitigation efforts once any process accelerates the decomposition of this huge amount of thawed C.
期刊介绍:
Earth’s Future: A transdisciplinary open access journal, Earth’s Future focuses on the state of the Earth and the prediction of the planet’s future. By publishing peer-reviewed articles as well as editorials, essays, reviews, and commentaries, this journal will be the preeminent scholarly resource on the Anthropocene. It will also help assess the risks and opportunities associated with environmental changes and challenges.