使用丝网印刷碳电极进行实时非法拉第电位阻抗检测

IF 3.4 Q2 CHEMISTRY, ANALYTICAL Analysis & sensing Pub Date : 2024-06-18 DOI:10.1002/anse.202400037
Emil Fuhry, Victoria Guglielmotti, Isabell Wachta, Diego Pallarola, Kannan Balasubramanian
{"title":"使用丝网印刷碳电极进行实时非法拉第电位阻抗检测","authors":"Emil Fuhry,&nbsp;Victoria Guglielmotti,&nbsp;Isabell Wachta,&nbsp;Diego Pallarola,&nbsp;Kannan Balasubramanian","doi":"10.1002/anse.202400037","DOIUrl":null,"url":null,"abstract":"<p>Electrochemical impedance spectroscopy (EIS) is a suitable analytical technique to detect interfacial phenomena and analyte binding at electrode surfaces. In contrast to metallic electrodes, carbon-based electrodes are more suited due to the low cost and the availability of more versatile methods for chemical functionalization. For (bio) sensing, often the Faradaic version of EIS in a three-electrode configuration is used, where a redox-active species is used as a marker. In order to avoid interference due to the redox-active marker with the interfacial interaction, we focus here on the use of non-Faradaic EIS in the absence of any added markers. First, we utilize the sedimentation of silica beads as a model system, which reduces the complexity of the interaction simplifying the interpretation of the measured signals. Moreover, we introduce two improvements. First, impedance measurements are performed in a three-electrode configuration with applied potential as an additional variable, which serves as a handle to optimize the sensitivity. Secondly, we present a time-differential strategy to detect subtle changes and demonstrate that we can consistently follow the sedimentation of beads using the non-Faradaic impedance as a function of the applied potential. Finally, we show a proof-of-principle demonstration for the biosensing of cell attachment on the electrodes in real-time using the proposed technique.</p>","PeriodicalId":72192,"journal":{"name":"Analysis & sensing","volume":"4 6","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anse.202400037","citationCount":"0","resultStr":"{\"title\":\"Real-Time Non-Faradaic Potentiodynamic Impedance Sensing Using Screen-Printed Carbon Electrodes\",\"authors\":\"Emil Fuhry,&nbsp;Victoria Guglielmotti,&nbsp;Isabell Wachta,&nbsp;Diego Pallarola,&nbsp;Kannan Balasubramanian\",\"doi\":\"10.1002/anse.202400037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electrochemical impedance spectroscopy (EIS) is a suitable analytical technique to detect interfacial phenomena and analyte binding at electrode surfaces. In contrast to metallic electrodes, carbon-based electrodes are more suited due to the low cost and the availability of more versatile methods for chemical functionalization. For (bio) sensing, often the Faradaic version of EIS in a three-electrode configuration is used, where a redox-active species is used as a marker. In order to avoid interference due to the redox-active marker with the interfacial interaction, we focus here on the use of non-Faradaic EIS in the absence of any added markers. First, we utilize the sedimentation of silica beads as a model system, which reduces the complexity of the interaction simplifying the interpretation of the measured signals. Moreover, we introduce two improvements. First, impedance measurements are performed in a three-electrode configuration with applied potential as an additional variable, which serves as a handle to optimize the sensitivity. Secondly, we present a time-differential strategy to detect subtle changes and demonstrate that we can consistently follow the sedimentation of beads using the non-Faradaic impedance as a function of the applied potential. Finally, we show a proof-of-principle demonstration for the biosensing of cell attachment on the electrodes in real-time using the proposed technique.</p>\",\"PeriodicalId\":72192,\"journal\":{\"name\":\"Analysis & sensing\",\"volume\":\"4 6\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anse.202400037\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis & sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anse.202400037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & sensing","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anse.202400037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

电化学阻抗光谱(EIS)是一种适用于检测电极表面界面现象和分析物结合的分析技术。与金属电极相比,碳基电极由于成本低廉、化学功能化方法多样而更为适用。在进行(生物)传感时,通常采用三电极配置的法拉第 EIS 法,将氧化还原活性物种作为标记。为了避免氧化还原活性标记对界面相互作用的干扰,我们在此重点介绍在不添加任何标记的情况下使用非法拉第EIS。首先,我们利用硅珠的沉积作为模型系统,从而降低了相互作用的复杂性,简化了测量信号的解释。此外,我们还引入了两项改进。首先,阻抗测量是在三电极配置中进行的,外加电位作为额外变量,可作为优化灵敏度的控制手段。其次,我们提出了一种时间差策略来检测微妙的变化,并证明我们可以利用作为外加电位函数的非法拉第阻抗持续跟踪珠子的沉积。最后,我们展示了利用所提技术对附着在电极上的细胞进行实时生物传感的原理验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real-Time Non-Faradaic Potentiodynamic Impedance Sensing Using Screen-Printed Carbon Electrodes

Electrochemical impedance spectroscopy (EIS) is a suitable analytical technique to detect interfacial phenomena and analyte binding at electrode surfaces. In contrast to metallic electrodes, carbon-based electrodes are more suited due to the low cost and the availability of more versatile methods for chemical functionalization. For (bio) sensing, often the Faradaic version of EIS in a three-electrode configuration is used, where a redox-active species is used as a marker. In order to avoid interference due to the redox-active marker with the interfacial interaction, we focus here on the use of non-Faradaic EIS in the absence of any added markers. First, we utilize the sedimentation of silica beads as a model system, which reduces the complexity of the interaction simplifying the interpretation of the measured signals. Moreover, we introduce two improvements. First, impedance measurements are performed in a three-electrode configuration with applied potential as an additional variable, which serves as a handle to optimize the sensitivity. Secondly, we present a time-differential strategy to detect subtle changes and demonstrate that we can consistently follow the sedimentation of beads using the non-Faradaic impedance as a function of the applied potential. Finally, we show a proof-of-principle demonstration for the biosensing of cell attachment on the electrodes in real-time using the proposed technique.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
期刊最新文献
Front Cover: Signal Amplification by Reversible Exchange and its Translation to Hyperpolarized Magnetic Resonance Imaging in Biomedicine (Anal. Sens. 6/2024) Front Cover: Anal. Sens. 5/2024) Pioneering Sensing Technologies Using Borophene-Based Composite/Hybrid Electrochemical Biosensors for Health Monitoring: A Perspective Signal Amplification by Reversible Exchange and its Translation to Hyperpolarized Magnetic Resonance Imaging in Biomedicine Front Cover: (Anal. Sens. 4/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1