Fang Peng, Changjing Qiu, Pingping Wu, Songnan Hu, Pan Chen, Xingxing Li, Mengke Li, Zijian Chen, Shi-Jian Su, Haisong Qi
{"title":"大规模制造具有颜色可调余辉的室温磷光纤维素灯丝(先进光学材料 32/2024)","authors":"Fang Peng, Changjing Qiu, Pingping Wu, Songnan Hu, Pan Chen, Xingxing Li, Mengke Li, Zijian Chen, Shi-Jian Su, Haisong Qi","doi":"10.1002/adom.202470097","DOIUrl":null,"url":null,"abstract":"<p><b>Room-Temperature Phosphorescence Cellulose Filaments</b></p><p>This cover image, referring to article number 2401419 by Xingxing Li, Shi-Jian Su, Haisong Qi, and co-workers, depicts cellulose-based filaments with remarkable room-temperature phosphorescence (RTP) properties when exposed to ultraviolet light, and the afterglow color of the filaments can be effectively modulated. The large-scale production of multicolored filaments with ultralong RTP will broaden the functional cellulose materials and expand applications in many fields.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"12 32","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202470097","citationCount":"0","resultStr":"{\"title\":\"Large-Scale Fabrication of Room-Temperature Phosphorescence Cellulose Filaments with Color-Tunable Afterglows (Advanced Optical Materials 32/2024)\",\"authors\":\"Fang Peng, Changjing Qiu, Pingping Wu, Songnan Hu, Pan Chen, Xingxing Li, Mengke Li, Zijian Chen, Shi-Jian Su, Haisong Qi\",\"doi\":\"10.1002/adom.202470097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Room-Temperature Phosphorescence Cellulose Filaments</b></p><p>This cover image, referring to article number 2401419 by Xingxing Li, Shi-Jian Su, Haisong Qi, and co-workers, depicts cellulose-based filaments with remarkable room-temperature phosphorescence (RTP) properties when exposed to ultraviolet light, and the afterglow color of the filaments can be effectively modulated. The large-scale production of multicolored filaments with ultralong RTP will broaden the functional cellulose materials and expand applications in many fields.\\n\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":116,\"journal\":{\"name\":\"Advanced Optical Materials\",\"volume\":\"12 32\",\"pages\":\"\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202470097\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Optical Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adom.202470097\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202470097","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
This cover image, referring to article number 2401419 by Xingxing Li, Shi-Jian Su, Haisong Qi, and co-workers, depicts cellulose-based filaments with remarkable room-temperature phosphorescence (RTP) properties when exposed to ultraviolet light, and the afterglow color of the filaments can be effectively modulated. The large-scale production of multicolored filaments with ultralong RTP will broaden the functional cellulose materials and expand applications in many fields.
期刊介绍:
Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.