Taina Conrad, Louise Roberts, Sandra Steiger, Marie Ringlein
{"title":"来自地穴的振动研究掩埋甲虫振动交流的可能性","authors":"Taina Conrad, Louise Roberts, Sandra Steiger, Marie Ringlein","doi":"10.1111/eea.13519","DOIUrl":null,"url":null,"abstract":"<p>Communication is fundamental in the animal kingdom, essential to interactions such as mating, defense, and parental care. Vibrational communication has often been overlooked in the past, but in recent decades, it has become clear that insects use substrate vibrations as a communication signal. In burying beetles of the genus <i>Nicrophorus</i>, which are known for their biparental brood care, both parents stridulate. Spending a considerable period of their lives underground, it is very likely the beetles utilize vibrations as part of their communication system. As playback experiments are challenging with this species, this study looked at the physical propagation of the signal of <i>Nicrophorus vespilloides</i> Herbst (Coleoptera: Siliphidae) through three soil types, as well as behavior, to see whether vibrational communication is possible. The aims were to determine: (1) whether the soils used in the laboratory compare to soil from the field, (2) whether the distance of propagation is enough for the range the beetles cover during brood care, (3) whether the two sexes show a difference in stridulation likelihood, (4) whether propagation of defensive signals differs from brood care signals, and (5) whether we can determine a behavior during stridulations that shows a clear and useable reaction to the signal. We manipulated beetles to induce stridulation and then used laser Doppler vibrometers to record the signals using three substrates and various distances, alongside behavioral observations. We showed that the three substrates tested, peat, coconut coir, and forest soil, displayed differences in terms of vibrational propagation, and that burying beetle stridulation signals can be transmitted up to about 25 cm in the soil. We also showed that the location where the animals stridulate exerts a significant influence on the total duration and number of stridulations. Overall, vibrational communication is in principle conceivable in this species, as the signals are transmitted far enough in the natural substrate to allow complex communication, opening possibilities for vibrational communication during this biparental brood care.</p>","PeriodicalId":11741,"journal":{"name":"Entomologia Experimentalis et Applicata","volume":"172 12","pages":"1154-1165"},"PeriodicalIF":1.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eea.13519","citationCount":"0","resultStr":"{\"title\":\"Vibrations from the crypt: Investigating the possibility of vibrational communication in burying beetles\",\"authors\":\"Taina Conrad, Louise Roberts, Sandra Steiger, Marie Ringlein\",\"doi\":\"10.1111/eea.13519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Communication is fundamental in the animal kingdom, essential to interactions such as mating, defense, and parental care. Vibrational communication has often been overlooked in the past, but in recent decades, it has become clear that insects use substrate vibrations as a communication signal. In burying beetles of the genus <i>Nicrophorus</i>, which are known for their biparental brood care, both parents stridulate. Spending a considerable period of their lives underground, it is very likely the beetles utilize vibrations as part of their communication system. As playback experiments are challenging with this species, this study looked at the physical propagation of the signal of <i>Nicrophorus vespilloides</i> Herbst (Coleoptera: Siliphidae) through three soil types, as well as behavior, to see whether vibrational communication is possible. The aims were to determine: (1) whether the soils used in the laboratory compare to soil from the field, (2) whether the distance of propagation is enough for the range the beetles cover during brood care, (3) whether the two sexes show a difference in stridulation likelihood, (4) whether propagation of defensive signals differs from brood care signals, and (5) whether we can determine a behavior during stridulations that shows a clear and useable reaction to the signal. We manipulated beetles to induce stridulation and then used laser Doppler vibrometers to record the signals using three substrates and various distances, alongside behavioral observations. We showed that the three substrates tested, peat, coconut coir, and forest soil, displayed differences in terms of vibrational propagation, and that burying beetle stridulation signals can be transmitted up to about 25 cm in the soil. We also showed that the location where the animals stridulate exerts a significant influence on the total duration and number of stridulations. Overall, vibrational communication is in principle conceivable in this species, as the signals are transmitted far enough in the natural substrate to allow complex communication, opening possibilities for vibrational communication during this biparental brood care.</p>\",\"PeriodicalId\":11741,\"journal\":{\"name\":\"Entomologia Experimentalis et Applicata\",\"volume\":\"172 12\",\"pages\":\"1154-1165\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eea.13519\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entomologia Experimentalis et Applicata\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/eea.13519\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entomologia Experimentalis et Applicata","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eea.13519","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Vibrations from the crypt: Investigating the possibility of vibrational communication in burying beetles
Communication is fundamental in the animal kingdom, essential to interactions such as mating, defense, and parental care. Vibrational communication has often been overlooked in the past, but in recent decades, it has become clear that insects use substrate vibrations as a communication signal. In burying beetles of the genus Nicrophorus, which are known for their biparental brood care, both parents stridulate. Spending a considerable period of their lives underground, it is very likely the beetles utilize vibrations as part of their communication system. As playback experiments are challenging with this species, this study looked at the physical propagation of the signal of Nicrophorus vespilloides Herbst (Coleoptera: Siliphidae) through three soil types, as well as behavior, to see whether vibrational communication is possible. The aims were to determine: (1) whether the soils used in the laboratory compare to soil from the field, (2) whether the distance of propagation is enough for the range the beetles cover during brood care, (3) whether the two sexes show a difference in stridulation likelihood, (4) whether propagation of defensive signals differs from brood care signals, and (5) whether we can determine a behavior during stridulations that shows a clear and useable reaction to the signal. We manipulated beetles to induce stridulation and then used laser Doppler vibrometers to record the signals using three substrates and various distances, alongside behavioral observations. We showed that the three substrates tested, peat, coconut coir, and forest soil, displayed differences in terms of vibrational propagation, and that burying beetle stridulation signals can be transmitted up to about 25 cm in the soil. We also showed that the location where the animals stridulate exerts a significant influence on the total duration and number of stridulations. Overall, vibrational communication is in principle conceivable in this species, as the signals are transmitted far enough in the natural substrate to allow complex communication, opening possibilities for vibrational communication during this biparental brood care.
期刊介绍:
Entomologia Experimentalis et Applicata publishes top quality original research papers in the fields of experimental biology and ecology of insects and other terrestrial arthropods, with both pure and applied scopes. Mini-reviews, technical notes and media reviews are also published. Although the scope of the journal covers the entire scientific field of entomology, it has established itself as the preferred medium for the communication of results in the areas of the physiological, ecological, and morphological inter-relations between phytophagous arthropods and their food plants, their parasitoids, predators, and pathogens. Examples of specific areas that are covered frequently are:
host-plant selection mechanisms
chemical and sensory ecology and infochemicals
parasitoid-host interactions
behavioural ecology
biosystematics
(co-)evolution
migration and dispersal
population modelling
sampling strategies
developmental and behavioural responses to photoperiod and temperature
nutrition
natural and transgenic plant resistance.