放气对喷射空化过程中染料降解的影响

IF 4.1 2区 工程技术 Q2 ENGINEERING, CHEMICAL Chemical Engineering Science Pub Date : 2024-11-16 DOI:10.1016/j.ces.2024.120937
Julius-Alexander Nöpel, Jochen Fröhlich, Frank Rüdiger
{"title":"放气对喷射空化过程中染料降解的影响","authors":"Julius-Alexander Nöpel, Jochen Fröhlich, Frank Rüdiger","doi":"10.1016/j.ces.2024.120937","DOIUrl":null,"url":null,"abstract":"As an advanced oxidation process, hydrodynamic cavitation generates radicals inducing reduction of chemicals in water. In the present work dye degradation is investigated as a representative for such chemical. Cavitation intensity, outgassing and flow reactivity largely depend on pressure boundary conditions. The paper presents an experimental study aimed to investigate effects of outgassing on degradation through jet cavitation in a multiphase reactor by varying back pressure between 0.6 and 2 bar at a constant pressure difference of 40 bar. The measurements reveal that some outgassed air bubbles are recirculated into the jet, which may enhance the process as an oxidizing agent. Degradation is found to vary significantly by back pressure obtaining maximum degradation around ambient pressure in the experimental setup used. But outgassing also restricts reactivity at back pressures below ambient pressure. The influence of outgassing on degradation unlocks opportunities for energy-to-degradation efficient applications.","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":"75 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of outgassing on dye degradation in jet cavitation\",\"authors\":\"Julius-Alexander Nöpel, Jochen Fröhlich, Frank Rüdiger\",\"doi\":\"10.1016/j.ces.2024.120937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As an advanced oxidation process, hydrodynamic cavitation generates radicals inducing reduction of chemicals in water. In the present work dye degradation is investigated as a representative for such chemical. Cavitation intensity, outgassing and flow reactivity largely depend on pressure boundary conditions. The paper presents an experimental study aimed to investigate effects of outgassing on degradation through jet cavitation in a multiphase reactor by varying back pressure between 0.6 and 2 bar at a constant pressure difference of 40 bar. The measurements reveal that some outgassed air bubbles are recirculated into the jet, which may enhance the process as an oxidizing agent. Degradation is found to vary significantly by back pressure obtaining maximum degradation around ambient pressure in the experimental setup used. But outgassing also restricts reactivity at back pressures below ambient pressure. The influence of outgassing on degradation unlocks opportunities for energy-to-degradation efficient applications.\",\"PeriodicalId\":271,\"journal\":{\"name\":\"Chemical Engineering Science\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ces.2024.120937\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ces.2024.120937","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

作为一种高级氧化过程,水动力空化作用会产生自由基,诱导水中化学物质的还原。本研究将染料降解作为此类化学物质的代表进行研究。空化强度、排气和流动反应性在很大程度上取决于压力边界条件。本文介绍了一项实验研究,旨在通过在 40 巴的恒定压差下改变 0.6 至 2 巴的背压,研究在多相反应器中喷射空化产生的放气对降解的影响。测量结果表明,一些排气气泡会再循环到喷射器中,这可能会作为氧化剂促进降解过程。在所使用的实验装置中,降解随背压的变化而显著不同,在环境压力附近降解最大。但在背压低于环境压力时,除气也会限制反应活性。除气对降解的影响为能源-降解高效应用带来了机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of outgassing on dye degradation in jet cavitation
As an advanced oxidation process, hydrodynamic cavitation generates radicals inducing reduction of chemicals in water. In the present work dye degradation is investigated as a representative for such chemical. Cavitation intensity, outgassing and flow reactivity largely depend on pressure boundary conditions. The paper presents an experimental study aimed to investigate effects of outgassing on degradation through jet cavitation in a multiphase reactor by varying back pressure between 0.6 and 2 bar at a constant pressure difference of 40 bar. The measurements reveal that some outgassed air bubbles are recirculated into the jet, which may enhance the process as an oxidizing agent. Degradation is found to vary significantly by back pressure obtaining maximum degradation around ambient pressure in the experimental setup used. But outgassing also restricts reactivity at back pressures below ambient pressure. The influence of outgassing on degradation unlocks opportunities for energy-to-degradation efficient applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering Science
Chemical Engineering Science 工程技术-工程:化工
CiteScore
7.50
自引率
8.50%
发文量
1025
审稿时长
50 days
期刊介绍: Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline. Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.
期刊最新文献
Experimental study on the motion characteristics of non-spherical biomass particulate systems in a fluidization tube Synthesis of heterostructured microspheres for efficient removal of malachite green and basic fuchsine Redox-Animated Supra-Amphiphilic Host-Guest interfacial recognition for Reconfiguring Alginate-Derived hierarchical colloidal particles to enhance foliar pesticide deposition An effective strategy for coal-series kaolin utilization: Preparation of magnetic adsorbent for Congo red adsorption La-doped MnCo2O4.5 modified Ti/SnO2-Sb2O4/PbO2 anode for enhancing the electrochemical performance in zinc electrowinning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1