Parijat Borah, Preeti Nanda Sahu, Anik Sen, Miquel A. Pericàs
{"title":"揭开氨基硅酸催化的异质缩合反应的机理 \"黑匣子","authors":"Parijat Borah, Preeti Nanda Sahu, Anik Sen, Miquel A. Pericàs","doi":"10.1016/j.jcat.2024.115852","DOIUrl":null,"url":null,"abstract":"Primary amino-functionalized silicas (H<sub>2</sub>N-SiO<sub>2</sub>) are well known acid-base cooperative catalysts for many organic transformations, including carbon–carbon (C–C) bond forming condensation reactions, and much attention has been devoted to the elucidation of their action mode. However, to our surprise, the mechanism of Henry reactions and Knoevenagel condensations catalyzed by H<sub>2</sub>N-SiO<sub>2</sub> is still paradoxical, and the identity of the actual base species, transition states, reactivity, and product selectivity, remain as debatable topics of discussion. Herein we propose a brand-new reaction mechanism for H<sub>2</sub>N-SiO<sub>2</sub>-catalyzed Henry reactions that overcomes all prior inconsistencies. With the aid of Hammett analysis and density functional theory (DFT) calculations, we have effectively identified several critical transition states and are able to explain reactivity and product selectivity. This study revealed that H<sub>2</sub>N-SiO<sub>2</sub> catalyzed Henry reactions of aldehydes and nitro compounds follow the imine mechanism to afford olefin adducts as only possible products. In addition, we utilized our findings to comprehend the mechanism of Knoevenagel condensation, a comparable reaction, dispelling a more than two-decade old misconception regarding the nature of the active base involved.","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":"17 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unravelling the mechanistic ‘Black Box’ of heterogeneous condensation reactions catalyzed by aminosilicas\",\"authors\":\"Parijat Borah, Preeti Nanda Sahu, Anik Sen, Miquel A. Pericàs\",\"doi\":\"10.1016/j.jcat.2024.115852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Primary amino-functionalized silicas (H<sub>2</sub>N-SiO<sub>2</sub>) are well known acid-base cooperative catalysts for many organic transformations, including carbon–carbon (C–C) bond forming condensation reactions, and much attention has been devoted to the elucidation of their action mode. However, to our surprise, the mechanism of Henry reactions and Knoevenagel condensations catalyzed by H<sub>2</sub>N-SiO<sub>2</sub> is still paradoxical, and the identity of the actual base species, transition states, reactivity, and product selectivity, remain as debatable topics of discussion. Herein we propose a brand-new reaction mechanism for H<sub>2</sub>N-SiO<sub>2</sub>-catalyzed Henry reactions that overcomes all prior inconsistencies. With the aid of Hammett analysis and density functional theory (DFT) calculations, we have effectively identified several critical transition states and are able to explain reactivity and product selectivity. This study revealed that H<sub>2</sub>N-SiO<sub>2</sub> catalyzed Henry reactions of aldehydes and nitro compounds follow the imine mechanism to afford olefin adducts as only possible products. In addition, we utilized our findings to comprehend the mechanism of Knoevenagel condensation, a comparable reaction, dispelling a more than two-decade old misconception regarding the nature of the active base involved.\",\"PeriodicalId\":346,\"journal\":{\"name\":\"Journal of Catalysis\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jcat.2024.115852\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcat.2024.115852","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Unravelling the mechanistic ‘Black Box’ of heterogeneous condensation reactions catalyzed by aminosilicas
Primary amino-functionalized silicas (H2N-SiO2) are well known acid-base cooperative catalysts for many organic transformations, including carbon–carbon (C–C) bond forming condensation reactions, and much attention has been devoted to the elucidation of their action mode. However, to our surprise, the mechanism of Henry reactions and Knoevenagel condensations catalyzed by H2N-SiO2 is still paradoxical, and the identity of the actual base species, transition states, reactivity, and product selectivity, remain as debatable topics of discussion. Herein we propose a brand-new reaction mechanism for H2N-SiO2-catalyzed Henry reactions that overcomes all prior inconsistencies. With the aid of Hammett analysis and density functional theory (DFT) calculations, we have effectively identified several critical transition states and are able to explain reactivity and product selectivity. This study revealed that H2N-SiO2 catalyzed Henry reactions of aldehydes and nitro compounds follow the imine mechanism to afford olefin adducts as only possible products. In addition, we utilized our findings to comprehend the mechanism of Knoevenagel condensation, a comparable reaction, dispelling a more than two-decade old misconception regarding the nature of the active base involved.
期刊介绍:
The Journal of Catalysis publishes scholarly articles on both heterogeneous and homogeneous catalysis, covering a wide range of chemical transformations. These include various types of catalysis, such as those mediated by photons, plasmons, and electrons. The focus of the studies is to understand the relationship between catalytic function and the underlying chemical properties of surfaces and metal complexes.
The articles in the journal offer innovative concepts and explore the synthesis and kinetics of inorganic solids and homogeneous complexes. Furthermore, they discuss spectroscopic techniques for characterizing catalysts, investigate the interaction of probes and reacting species with catalysts, and employ theoretical methods.
The research presented in the journal should have direct relevance to the field of catalytic processes, addressing either fundamental aspects or applications of catalysis.