羟基对缺陷四方氧化锆催化剂上氧活化和解吸自由能的改变

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry C Pub Date : 2024-11-15 DOI:10.1021/acs.jpcc.4c04866
Sara Fazeli, Pascal Brault, Amaël Caillard, Eric Millon
{"title":"羟基对缺陷四方氧化锆催化剂上氧活化和解吸自由能的改变","authors":"Sara Fazeli, Pascal Brault, Amaël Caillard, Eric Millon","doi":"10.1021/acs.jpcc.4c04866","DOIUrl":null,"url":null,"abstract":"Describing the activation of O<sub>2</sub> on metal surfaces is crucial for understanding fundamental electrochemical processes, such as the oxygen reduction reaction (ORR) in hydrogen fuel cells. This study explores how defects influence O<sub>2</sub> adsorption mechanisms on a zirconia-based cathode. In the first step, we model O<sub>2</sub> adsorption on two defective surfaces: oxygen-deficient t-ZrO<sub>2–<i>x</i></sub> and oxynitride t-ZrO<sub>2–<i>x</i></sub>N<sub><i>x</i></sub>, in an aqueous solution. We describe various O<sub>2</sub> adsorption states by analyzing charge transfer and cohesive energy changes in O<sub>2</sub> molecules, Zr active sites, and defects. The results suggest that O<sub>2</sub> adsorption mechanisms on the surfaces of t-ZrO<sub>2–<i>x</i></sub> and t-ZrO<sub>2–<i>x</i></sub>N<sub><i>x</i></sub> occur through dissociative and associative pathways, respectively. Additionally, O<sub>2</sub> adsorption on t-ZrO<sub>2–<i>x</i></sub>N<sub><i>x</i></sub> leads to the departure of N dopants from the surface, which is unfavorable for catalytic activity. In the second step, we modified the surfaces of t-ZrO<sub>2–<i>x</i></sub> and t-ZrO<sub>2–<i>x</i></sub>N<sub><i>x</i></sub> with the hydroxyl (OH) group. Afterward, we simulate the O<sub>2</sub> activation process on these modified surfaces and identify the most probable active sites. Our findings reveal that OH groups stabilize N dopants on hydroxylated t-ZrO<sub>2–<i>x</i></sub>N<sub><i>x</i></sub>, preventing their loss. Moreover, OH groups influence the O<sub>2</sub> adsorption mechanism on t-ZrO<sub>2–<i>x</i></sub>, shifting toward associative O–O bond breaking. Conversely, O<sub>2</sub> adsorption on hydroxylated t-ZrO<sub>2–<i>x</i></sub>N<sub><i>x</i></sub> remains molecularly associative. Overall, on hydroxylated surfaces, O<sub>2</sub> adsorption involves stronger charge transfer among oxygen, defects, and Zr active sites. In the third step, we explored the trends of desorption of the O<sub>2</sub> from these surfaces. This entails analyzing O<sub>2</sub> desorption using steered molecular dynamics (SMD) to generate potential mean force (PMF) profiles and applying Jarzynski’s equality to calculate the free energy of desorption. Herein, we find that the free energy of the desorption of O<sub>2</sub> from hydroxylated surfaces is lower, indicating a more spontaneous process compared to t-ZrO<sub>2–<i>x</i></sub> and t-ZrO<sub>2–<i>x</i></sub>N<sub><i>x</i></sub>. Moreover, we discover that oxygen has the highest tendency to desorb from the hydroxylated-ZrO<sub>2–<i>x</i></sub> surface, which is attributed to the lowest free energy involved in pulling oxygen from the surface, potentially influencing ORR acceleration. These findings offer valuable guidance for developing efficient nonplatinum-based cathode materials, particularly in catalysis applications.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"8 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydroxyl-Induced Modification of Oxygen Activation and Desorption Free Energy on Defective Tetragonal Zirconia Catalysts\",\"authors\":\"Sara Fazeli, Pascal Brault, Amaël Caillard, Eric Millon\",\"doi\":\"10.1021/acs.jpcc.4c04866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Describing the activation of O<sub>2</sub> on metal surfaces is crucial for understanding fundamental electrochemical processes, such as the oxygen reduction reaction (ORR) in hydrogen fuel cells. This study explores how defects influence O<sub>2</sub> adsorption mechanisms on a zirconia-based cathode. In the first step, we model O<sub>2</sub> adsorption on two defective surfaces: oxygen-deficient t-ZrO<sub>2–<i>x</i></sub> and oxynitride t-ZrO<sub>2–<i>x</i></sub>N<sub><i>x</i></sub>, in an aqueous solution. We describe various O<sub>2</sub> adsorption states by analyzing charge transfer and cohesive energy changes in O<sub>2</sub> molecules, Zr active sites, and defects. The results suggest that O<sub>2</sub> adsorption mechanisms on the surfaces of t-ZrO<sub>2–<i>x</i></sub> and t-ZrO<sub>2–<i>x</i></sub>N<sub><i>x</i></sub> occur through dissociative and associative pathways, respectively. Additionally, O<sub>2</sub> adsorption on t-ZrO<sub>2–<i>x</i></sub>N<sub><i>x</i></sub> leads to the departure of N dopants from the surface, which is unfavorable for catalytic activity. In the second step, we modified the surfaces of t-ZrO<sub>2–<i>x</i></sub> and t-ZrO<sub>2–<i>x</i></sub>N<sub><i>x</i></sub> with the hydroxyl (OH) group. Afterward, we simulate the O<sub>2</sub> activation process on these modified surfaces and identify the most probable active sites. Our findings reveal that OH groups stabilize N dopants on hydroxylated t-ZrO<sub>2–<i>x</i></sub>N<sub><i>x</i></sub>, preventing their loss. Moreover, OH groups influence the O<sub>2</sub> adsorption mechanism on t-ZrO<sub>2–<i>x</i></sub>, shifting toward associative O–O bond breaking. Conversely, O<sub>2</sub> adsorption on hydroxylated t-ZrO<sub>2–<i>x</i></sub>N<sub><i>x</i></sub> remains molecularly associative. Overall, on hydroxylated surfaces, O<sub>2</sub> adsorption involves stronger charge transfer among oxygen, defects, and Zr active sites. In the third step, we explored the trends of desorption of the O<sub>2</sub> from these surfaces. This entails analyzing O<sub>2</sub> desorption using steered molecular dynamics (SMD) to generate potential mean force (PMF) profiles and applying Jarzynski’s equality to calculate the free energy of desorption. Herein, we find that the free energy of the desorption of O<sub>2</sub> from hydroxylated surfaces is lower, indicating a more spontaneous process compared to t-ZrO<sub>2–<i>x</i></sub> and t-ZrO<sub>2–<i>x</i></sub>N<sub><i>x</i></sub>. Moreover, we discover that oxygen has the highest tendency to desorb from the hydroxylated-ZrO<sub>2–<i>x</i></sub> surface, which is attributed to the lowest free energy involved in pulling oxygen from the surface, potentially influencing ORR acceleration. These findings offer valuable guidance for developing efficient nonplatinum-based cathode materials, particularly in catalysis applications.\",\"PeriodicalId\":61,\"journal\":{\"name\":\"The Journal of Physical Chemistry C\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpcc.4c04866\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.4c04866","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

描述金属表面的氧气活化对于理解基本电化学过程(如氢燃料电池中的氧气还原反应(ORR))至关重要。本研究探讨了缺陷如何影响氧化锆基阴极上的氧气吸附机制。首先,我们模拟了水溶液中两种缺陷表面(缺氧的 t-ZrO2-x 和氮氧化物 t-ZrO2-xNx)上的 O2 吸附。我们通过分析 O2 分子、Zr 活性位点和缺陷中的电荷转移和内聚能变化来描述各种 O2 吸附状态。结果表明,t-ZrO2-x 和 t-ZrO2-xNx 表面的 O2 吸附机制分别是通过解离和缔合途径发生的。此外,t-ZrO2-xNx 上的 O2 吸附会导致 N 掺杂物离开表面,不利于催化活性。第二步,我们用羟基(OH)修饰了 t-ZrO2-x 和 t-ZrO2-xNx 的表面。之后,我们模拟了这些修饰表面上的氧气活化过程,并确定了最可能的活性位点。我们的研究结果表明,羟基能稳定羟基化 t-ZrO2-xNx 上的 N 掺杂物,防止其流失。此外,羟基还影响了 t-ZrO2-x 上的氧气吸附机制,使其转向关联性 O-O 键断裂。相反,羟基化的 t-ZrO2-xNx 对 O2 的吸附仍然是分子缔合。总的来说,在羟基化表面上,O2 吸附涉及氧、缺陷和 Zr 活性位点之间更强的电荷转移。第三步,我们探索了这些表面的 O2 解吸趋势。这需要使用转向分子动力学(SMD)分析 O2 解吸,生成势均力(PMF)曲线,并应用 Jarzynski 等式计算解吸自由能。在这里,我们发现羟基化表面对 O2 的解吸自由能较低,表明与 t-ZrO2-x 和 t-ZrO2-xNx 相比,这是一个更自发的过程。此外,我们还发现氧气从羟基化 ZrO2-x 表面解吸的倾向最大,这是因为从表面吸附氧气的自由能最低,从而可能影响 ORR 的加速。这些发现为开发高效的非铂基阴极材料,尤其是催化应用提供了宝贵的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hydroxyl-Induced Modification of Oxygen Activation and Desorption Free Energy on Defective Tetragonal Zirconia Catalysts
Describing the activation of O2 on metal surfaces is crucial for understanding fundamental electrochemical processes, such as the oxygen reduction reaction (ORR) in hydrogen fuel cells. This study explores how defects influence O2 adsorption mechanisms on a zirconia-based cathode. In the first step, we model O2 adsorption on two defective surfaces: oxygen-deficient t-ZrO2–x and oxynitride t-ZrO2–xNx, in an aqueous solution. We describe various O2 adsorption states by analyzing charge transfer and cohesive energy changes in O2 molecules, Zr active sites, and defects. The results suggest that O2 adsorption mechanisms on the surfaces of t-ZrO2–x and t-ZrO2–xNx occur through dissociative and associative pathways, respectively. Additionally, O2 adsorption on t-ZrO2–xNx leads to the departure of N dopants from the surface, which is unfavorable for catalytic activity. In the second step, we modified the surfaces of t-ZrO2–x and t-ZrO2–xNx with the hydroxyl (OH) group. Afterward, we simulate the O2 activation process on these modified surfaces and identify the most probable active sites. Our findings reveal that OH groups stabilize N dopants on hydroxylated t-ZrO2–xNx, preventing their loss. Moreover, OH groups influence the O2 adsorption mechanism on t-ZrO2–x, shifting toward associative O–O bond breaking. Conversely, O2 adsorption on hydroxylated t-ZrO2–xNx remains molecularly associative. Overall, on hydroxylated surfaces, O2 adsorption involves stronger charge transfer among oxygen, defects, and Zr active sites. In the third step, we explored the trends of desorption of the O2 from these surfaces. This entails analyzing O2 desorption using steered molecular dynamics (SMD) to generate potential mean force (PMF) profiles and applying Jarzynski’s equality to calculate the free energy of desorption. Herein, we find that the free energy of the desorption of O2 from hydroxylated surfaces is lower, indicating a more spontaneous process compared to t-ZrO2–x and t-ZrO2–xNx. Moreover, we discover that oxygen has the highest tendency to desorb from the hydroxylated-ZrO2–x surface, which is attributed to the lowest free energy involved in pulling oxygen from the surface, potentially influencing ORR acceleration. These findings offer valuable guidance for developing efficient nonplatinum-based cathode materials, particularly in catalysis applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
期刊最新文献
Dynamic Polar Hydrogen Bonds and Photoconductivity of an Alkylamide-Substituted Carbazole Derivative Data-Driven Transition Temperature Enhancement of NbN Layered Structures: A Framework for Quantum Materials Design Modulation of Proton Permeation through Defect Engineering in Hexagonal Boron Nitride Photoluminescence Switching in Quantum Dots Connected with Carboxylic Acid and Thiocarboxylic Acid End-Group Diarylethene Molecules Pseudohalide Anion Surface Engineering for Mixed Cation Perovskite Nanocrystals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1