压力对 CsPbBr3/ZnS 纳米晶异质结构发光特性和能量传递的影响

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry C Pub Date : 2024-11-15 DOI:10.1021/acs.jpcc.4c06610
Zexun Cui, Pingping Zhang, Weixin Li, Pengyu Zhou, Yu Zhang, Bao Liu, Yuqiang Li
{"title":"压力对 CsPbBr3/ZnS 纳米晶异质结构发光特性和能量传递的影响","authors":"Zexun Cui, Pingping Zhang, Weixin Li, Pengyu Zhou, Yu Zhang, Bao Liu, Yuqiang Li","doi":"10.1021/acs.jpcc.4c06610","DOIUrl":null,"url":null,"abstract":"All-inorganic perovskite CsPbX<sub>3</sub> (X = Cl, Br, or I) and related materials have shown great potential for applications in solar cells, light-emitting diodes, and photodetectors. A kind of heterostructure was proposed comprising CsPbBr<sub>3</sub>/ZnS nanocrystals in order to enhance the luminescence properties of CsPbBr<sub>3</sub> nanocrystals. The incorporation of ZnS induces recombination at the interface, facilitating charge transfer and the formation of a type-II heterostructure. The luminescence characteristics of this heterostructure can be modulated by applying pressure. The photoluminescence intensity of the CsPbBr<sub>3</sub>/ZnS nanocrystals is significantly enhanced up to 0.29 GPa. With further pressure increase, these nanocrystals exhibit a red shift in emission wavelength, resulting in a high sensitivity (dλ/d<i>P</i>) of 9.59 nm GPa<sup>–1</sup> and an absolute sensitivity (dFWHM/d<i>P</i>) of 6.07 nm GPa<sup>–1</sup>. Photoluminescence quenching occurs until the completely undetectable emission at a pressure of 2.38 GPa. The observed anomalous enhancement and wavelength red shift indicate that pressure can promote the transition from free excitons to self-trapping excitons, leading to energy transfer between ZnS and CsPbBr<sub>3</sub>. This study enhances the understanding effect of high pressure on luminescent materials in heterostructures.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"21 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pressure Effect on Luminescence Characteristics and Energy Transfer in CsPbBr3/ZnS Nanocrystal Heterostructures\",\"authors\":\"Zexun Cui, Pingping Zhang, Weixin Li, Pengyu Zhou, Yu Zhang, Bao Liu, Yuqiang Li\",\"doi\":\"10.1021/acs.jpcc.4c06610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"All-inorganic perovskite CsPbX<sub>3</sub> (X = Cl, Br, or I) and related materials have shown great potential for applications in solar cells, light-emitting diodes, and photodetectors. A kind of heterostructure was proposed comprising CsPbBr<sub>3</sub>/ZnS nanocrystals in order to enhance the luminescence properties of CsPbBr<sub>3</sub> nanocrystals. The incorporation of ZnS induces recombination at the interface, facilitating charge transfer and the formation of a type-II heterostructure. The luminescence characteristics of this heterostructure can be modulated by applying pressure. The photoluminescence intensity of the CsPbBr<sub>3</sub>/ZnS nanocrystals is significantly enhanced up to 0.29 GPa. With further pressure increase, these nanocrystals exhibit a red shift in emission wavelength, resulting in a high sensitivity (dλ/d<i>P</i>) of 9.59 nm GPa<sup>–1</sup> and an absolute sensitivity (dFWHM/d<i>P</i>) of 6.07 nm GPa<sup>–1</sup>. Photoluminescence quenching occurs until the completely undetectable emission at a pressure of 2.38 GPa. The observed anomalous enhancement and wavelength red shift indicate that pressure can promote the transition from free excitons to self-trapping excitons, leading to energy transfer between ZnS and CsPbBr<sub>3</sub>. This study enhances the understanding effect of high pressure on luminescent materials in heterostructures.\",\"PeriodicalId\":61,\"journal\":{\"name\":\"The Journal of Physical Chemistry C\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpcc.4c06610\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.4c06610","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

全无机过氧化物 CsPbX3(X = Cl、Br 或 I)及相关材料在太阳能电池、发光二极管和光电探测器中显示出巨大的应用潜力。为了增强 CsPbBr3 纳米晶体的发光特性,有人提出了一种由 CsPbBr3/ZnS 纳米晶体组成的异质结构。ZnS 的加入诱导了界面上的重组,促进了电荷转移并形成了 II 型异质结构。这种异质结构的发光特性可通过施加压力来调节。在 0.29 GPa 的压力下,CsPbBr3/ZnS 纳米晶体的光致发光强度显著增强。随着压力的进一步增加,这些纳米晶体的发射波长会发生红移,从而产生 9.59 nm GPa-1 的高灵敏度(dλ/dP)和 6.07 nm GPa-1 的绝对灵敏度(dFWHM/dP)。在压力为 2.38 GPa 时,会出现光致发光淬灭,直至完全检测不到发射。观察到的异常增强和波长红移表明,压力可以促进自由激子向自俘获激子的转变,从而导致 ZnS 和 CsPbBr3 之间的能量转移。这项研究加深了人们对高压对异质结构发光材料影响的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pressure Effect on Luminescence Characteristics and Energy Transfer in CsPbBr3/ZnS Nanocrystal Heterostructures
All-inorganic perovskite CsPbX3 (X = Cl, Br, or I) and related materials have shown great potential for applications in solar cells, light-emitting diodes, and photodetectors. A kind of heterostructure was proposed comprising CsPbBr3/ZnS nanocrystals in order to enhance the luminescence properties of CsPbBr3 nanocrystals. The incorporation of ZnS induces recombination at the interface, facilitating charge transfer and the formation of a type-II heterostructure. The luminescence characteristics of this heterostructure can be modulated by applying pressure. The photoluminescence intensity of the CsPbBr3/ZnS nanocrystals is significantly enhanced up to 0.29 GPa. With further pressure increase, these nanocrystals exhibit a red shift in emission wavelength, resulting in a high sensitivity (dλ/dP) of 9.59 nm GPa–1 and an absolute sensitivity (dFWHM/dP) of 6.07 nm GPa–1. Photoluminescence quenching occurs until the completely undetectable emission at a pressure of 2.38 GPa. The observed anomalous enhancement and wavelength red shift indicate that pressure can promote the transition from free excitons to self-trapping excitons, leading to energy transfer between ZnS and CsPbBr3. This study enhances the understanding effect of high pressure on luminescent materials in heterostructures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
期刊最新文献
Dynamic Polar Hydrogen Bonds and Photoconductivity of an Alkylamide-Substituted Carbazole Derivative Data-Driven Transition Temperature Enhancement of NbN Layered Structures: A Framework for Quantum Materials Design Modulation of Proton Permeation through Defect Engineering in Hexagonal Boron Nitride Photoluminescence Switching in Quantum Dots Connected with Carboxylic Acid and Thiocarboxylic Acid End-Group Diarylethene Molecules Pseudohalide Anion Surface Engineering for Mixed Cation Perovskite Nanocrystals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1