Yang Liu, Yan Zhang, Xiaofang Lv, Yisong Yu, Shuang Ren, Qianli Ma, Chuanshuo Wang, Shidong Zhou, Bingcai Sun
{"title":"研究含有复合抗凝结剂的水合物浆料的流变性和流动风险:蜡、水切割和连续相组成的影响","authors":"Yang Liu, Yan Zhang, Xiaofang Lv, Yisong Yu, Shuang Ren, Qianli Ma, Chuanshuo Wang, Shidong Zhou, Bingcai Sun","doi":"10.1016/j.ces.2024.120921","DOIUrl":null,"url":null,"abstract":"As oil and gas extraction increasingly ventures into deep-sea environments, the issues surrounding the flow safety of hydrate and wax deposits have become more critical. There is an urgent need to develop environmentally friendly and adaptable hydrate anti-agglomerants, and to expand the database and knowledge base for risk management strategies to ensure optimal production safety. This study formulated combined anti-agglomerants with varying HLB values using Span 80 and Tween 80 in different ratios. Rheological experiments were conducted to investigate their synergistic anti-agglomeration performance in water-in-oil emulsions and their adaptability in environments with wax, varying water contents, and different continuous phase compositions. The results indicate that, in comparison to a single anti-agglomerant, the combined anti-agglomerants not only increases the critical time for hydrate formation but also reduces peak viscosity and stable viscosity by 23–90 % and 25–85 %, respectively. Additionally, an index for assessing the flow risk of hydrate slurries under specific conditions was proposed, which demonstrates that the combined anti-agglomerant with an HLB value of 8.6 exhibits exceptional performance across various conditions. This finding is significant for refining risk management strategies for hydrates in deep-sea oil and gas transportation processes.","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":"1 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of the rheology and flow risk of hydrate slurries containing combined anti-agglomerants: Effects of wax, water cut and continuous phase composition\",\"authors\":\"Yang Liu, Yan Zhang, Xiaofang Lv, Yisong Yu, Shuang Ren, Qianli Ma, Chuanshuo Wang, Shidong Zhou, Bingcai Sun\",\"doi\":\"10.1016/j.ces.2024.120921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As oil and gas extraction increasingly ventures into deep-sea environments, the issues surrounding the flow safety of hydrate and wax deposits have become more critical. There is an urgent need to develop environmentally friendly and adaptable hydrate anti-agglomerants, and to expand the database and knowledge base for risk management strategies to ensure optimal production safety. This study formulated combined anti-agglomerants with varying HLB values using Span 80 and Tween 80 in different ratios. Rheological experiments were conducted to investigate their synergistic anti-agglomeration performance in water-in-oil emulsions and their adaptability in environments with wax, varying water contents, and different continuous phase compositions. The results indicate that, in comparison to a single anti-agglomerant, the combined anti-agglomerants not only increases the critical time for hydrate formation but also reduces peak viscosity and stable viscosity by 23–90 % and 25–85 %, respectively. Additionally, an index for assessing the flow risk of hydrate slurries under specific conditions was proposed, which demonstrates that the combined anti-agglomerant with an HLB value of 8.6 exhibits exceptional performance across various conditions. This finding is significant for refining risk management strategies for hydrates in deep-sea oil and gas transportation processes.\",\"PeriodicalId\":271,\"journal\":{\"name\":\"Chemical Engineering Science\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ces.2024.120921\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ces.2024.120921","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Study of the rheology and flow risk of hydrate slurries containing combined anti-agglomerants: Effects of wax, water cut and continuous phase composition
As oil and gas extraction increasingly ventures into deep-sea environments, the issues surrounding the flow safety of hydrate and wax deposits have become more critical. There is an urgent need to develop environmentally friendly and adaptable hydrate anti-agglomerants, and to expand the database and knowledge base for risk management strategies to ensure optimal production safety. This study formulated combined anti-agglomerants with varying HLB values using Span 80 and Tween 80 in different ratios. Rheological experiments were conducted to investigate their synergistic anti-agglomeration performance in water-in-oil emulsions and their adaptability in environments with wax, varying water contents, and different continuous phase compositions. The results indicate that, in comparison to a single anti-agglomerant, the combined anti-agglomerants not only increases the critical time for hydrate formation but also reduces peak viscosity and stable viscosity by 23–90 % and 25–85 %, respectively. Additionally, an index for assessing the flow risk of hydrate slurries under specific conditions was proposed, which demonstrates that the combined anti-agglomerant with an HLB value of 8.6 exhibits exceptional performance across various conditions. This finding is significant for refining risk management strategies for hydrates in deep-sea oil and gas transportation processes.
期刊介绍:
Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline.
Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.