Pd2L4 配位笼中溶剂引导的社会手性自分类。

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2024-11-17 DOI:10.1021/jacs.4c12525
Alexandre Walther, Gers Tusha, Björn Schmidt, Julian J Holstein, Lars V Schäfer, Guido H Clever
{"title":"Pd2L4 配位笼中溶剂引导的社会手性自分类。","authors":"Alexandre Walther, Gers Tusha, Björn Schmidt, Julian J Holstein, Lars V Schäfer, Guido H Clever","doi":"10.1021/jacs.4c12525","DOIUrl":null,"url":null,"abstract":"<p><p>A family of Pd<sub>2</sub><b>L</b><sub>4</sub> cages prepared from ligands based on an axially chiral diamino-[1,1'-biazulene] motif (serving as a unique azulene-based surrogate of the ubiquitous BINOL moiety) is reported. We show that preparing a cage starting from the racemate of a shorter bis-monodentate ligand derivative, equipped with pyridine donor groups, leads to integrative (\"social\") chiral self-sorting, exclusively yielding the <i>meso-trans</i> product, but only in a selection of solvents. This phenomenon is driven by individual solvent molecules acting as hydrogen bonding tethers between the amino groups of neighboring ligands, thereby locking the final coordination cage in a single isomeric form. The experimental (solvent-dependent NMR, single-crystal X-ray diffraction) observations of this cooperative interaction could be explained by computational analyses only when explicit solvation was considered. Furthermore, we prepared a larger chiral ligand with isoquinoline donors, which, unlike the first one, does not undergo social self-sorting from its racemic mixture, further highlighting the importance of solvents bridging short distances between the amino groups. Homochiral cages formed from this larger ligand, however, furnish a cavity that can bind anionic and neutral metal complexes such as [Pt(CN)<sub>6</sub>]<sup>2-</sup> and Cr(CO)<sub>6</sub> and discriminate between the two enantiomers of chiral guest camphor sulfonate.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":null,"pages":null},"PeriodicalIF":14.4000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solvent-Directed Social Chiral Self-Sorting in Pd<sub>2</sub>L<sub>4</sub> Coordination Cages.\",\"authors\":\"Alexandre Walther, Gers Tusha, Björn Schmidt, Julian J Holstein, Lars V Schäfer, Guido H Clever\",\"doi\":\"10.1021/jacs.4c12525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A family of Pd<sub>2</sub><b>L</b><sub>4</sub> cages prepared from ligands based on an axially chiral diamino-[1,1'-biazulene] motif (serving as a unique azulene-based surrogate of the ubiquitous BINOL moiety) is reported. We show that preparing a cage starting from the racemate of a shorter bis-monodentate ligand derivative, equipped with pyridine donor groups, leads to integrative (\\\"social\\\") chiral self-sorting, exclusively yielding the <i>meso-trans</i> product, but only in a selection of solvents. This phenomenon is driven by individual solvent molecules acting as hydrogen bonding tethers between the amino groups of neighboring ligands, thereby locking the final coordination cage in a single isomeric form. The experimental (solvent-dependent NMR, single-crystal X-ray diffraction) observations of this cooperative interaction could be explained by computational analyses only when explicit solvation was considered. Furthermore, we prepared a larger chiral ligand with isoquinoline donors, which, unlike the first one, does not undergo social self-sorting from its racemic mixture, further highlighting the importance of solvents bridging short distances between the amino groups. Homochiral cages formed from this larger ligand, however, furnish a cavity that can bind anionic and neutral metal complexes such as [Pt(CN)<sub>6</sub>]<sup>2-</sup> and Cr(CO)<sub>6</sub> and discriminate between the two enantiomers of chiral guest camphor sulfonate.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.4c12525\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c12525","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究报道了由基于轴向手性二氨基-[1,1'-联氮薁]基团(作为无处不在的 BINOL 分子的独特联氮薁基替代物)的配体制备的 Pd2L4 笼系列。我们的研究表明,从配有吡啶供体基团的较短双单体配体衍生物的外消旋物开始制备笼子,会导致整合性("社会性")手性自排序,只产生中反式产物,但只在特定溶剂中产生。这种现象是由于单个溶剂分子在相邻配体的氨基之间起着氢键拴的作用,从而将最终配位笼锁定为单一异构体形式。只有在考虑显式溶解的情况下,计算分析才能解释这种合作作用的实验(依赖溶剂的核磁共振、单晶 X 射线衍射)观测结果。此外,我们还利用异喹啉供体制备了一种更大的手性配体,与第一种配体不同,这种配体不会从其外消旋混合物中进行社会自分选,这进一步突出了溶剂在氨基之间的短距离桥接的重要性。然而,由这种较大配体形成的同手性笼子提供了一个空腔,可以结合阴离子和中性金属复合物,如 [Pt(CN)6]2- 和 Cr(CO)6,并区分手性客体樟脑磺酸盐的两种对映体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Solvent-Directed Social Chiral Self-Sorting in Pd2L4 Coordination Cages.

A family of Pd2L4 cages prepared from ligands based on an axially chiral diamino-[1,1'-biazulene] motif (serving as a unique azulene-based surrogate of the ubiquitous BINOL moiety) is reported. We show that preparing a cage starting from the racemate of a shorter bis-monodentate ligand derivative, equipped with pyridine donor groups, leads to integrative ("social") chiral self-sorting, exclusively yielding the meso-trans product, but only in a selection of solvents. This phenomenon is driven by individual solvent molecules acting as hydrogen bonding tethers between the amino groups of neighboring ligands, thereby locking the final coordination cage in a single isomeric form. The experimental (solvent-dependent NMR, single-crystal X-ray diffraction) observations of this cooperative interaction could be explained by computational analyses only when explicit solvation was considered. Furthermore, we prepared a larger chiral ligand with isoquinoline donors, which, unlike the first one, does not undergo social self-sorting from its racemic mixture, further highlighting the importance of solvents bridging short distances between the amino groups. Homochiral cages formed from this larger ligand, however, furnish a cavity that can bind anionic and neutral metal complexes such as [Pt(CN)6]2- and Cr(CO)6 and discriminate between the two enantiomers of chiral guest camphor sulfonate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Excited State Dynamics of Geometrical Evolution of α-Substituted Dibenzoylmethanatoboron Difluoride Complex with Aggregation-Induced Emission Property. Solvent-Directed Social Chiral Self-Sorting in Pd2L4 Coordination Cages. Length and Sequence-Selective Polymer Synthesis Templated by a Combination of Covalent and Noncovalent Base-Pairing Interactions A Universal Interfacial Reconstruction Strategy Based on Converting Residual Alkali for Sodium Layered Oxide Cathodes: Marvelous Air Stability, Reversible Anion Redox, and Practical Full Cell Vertically Expanded Crystalline Porous Covalent Organic Frameworks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1