Alexander Vaneev, Petr Gorelkin, Eugene Barykin, Vasilii Kolmogorov, Roman Timoshenko, Vladimir Mitkevich, Irina Petrushanko, Ksenia Varshavskaya, Sergey Salikhov, Natalia Klyachko, Alexander Makarov, Alexander Erofeev
{"title":"抗氧化剂对暴露于 β 淀粉样肽的神经元细胞的机械特性和 ROS 水平的影响","authors":"Alexander Vaneev, Petr Gorelkin, Eugene Barykin, Vasilii Kolmogorov, Roman Timoshenko, Vladimir Mitkevich, Irina Petrushanko, Ksenia Varshavskaya, Sergey Salikhov, Natalia Klyachko, Alexander Makarov, Alexander Erofeev","doi":"10.1002/cbic.202400786","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to investigate the potential role of antioxidants in oxidative stress and its consequent impact on the mechanical properties of neuronal cells, particularly the stress induced by amyloid-beta (1-42) (Aβ42) aggregates. A key aspect of our research involved using scanning ion-conductance microscopy (SICM) to assess the mechanical properties (Young's modulus) of neuronal cells under oxidative stress. Reactive oxygen species (ROS) level was measured in single-cell using the electrochemical method by low-invasive Pt nanoelectrode. We investigated the effects of the low molecular weight antioxidant N-acetylcysteine (NAC) and the antioxidant enzyme superoxide dismutase 1 (SOD1) on the physiological and mechanical properties of neuronal cells using SICM. Using electrochemical method and SICM, NAC effectively reduces oxidative stress and restores Young's Modulus in SH-SY5Y cells exposed to hydrogen peroxide and Aβ42 oligomers. Our study first examined the influence of SOD1 on intracellular ROS levels in the presence of Aβ oligomers. The investigation into the effects of SOD1 and its nanoparticle form SOD1 on SH-SY5Y cells reveals impacts on mechanical properties and oxidative stress. The combined use of SICM and electrochemical measurements provided a comprehensive understanding of how oxidative stress, including that triggered by the Aβ oligomers affects the mechanical properties of cells.</p>","PeriodicalId":140,"journal":{"name":"ChemBioChem","volume":" ","pages":"e202400786"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Antioxidants on Mechanical Properties and ROS levels of Neuronal Cells Exposed to β-amyloid peptide.\",\"authors\":\"Alexander Vaneev, Petr Gorelkin, Eugene Barykin, Vasilii Kolmogorov, Roman Timoshenko, Vladimir Mitkevich, Irina Petrushanko, Ksenia Varshavskaya, Sergey Salikhov, Natalia Klyachko, Alexander Makarov, Alexander Erofeev\",\"doi\":\"10.1002/cbic.202400786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aims to investigate the potential role of antioxidants in oxidative stress and its consequent impact on the mechanical properties of neuronal cells, particularly the stress induced by amyloid-beta (1-42) (Aβ42) aggregates. A key aspect of our research involved using scanning ion-conductance microscopy (SICM) to assess the mechanical properties (Young's modulus) of neuronal cells under oxidative stress. Reactive oxygen species (ROS) level was measured in single-cell using the electrochemical method by low-invasive Pt nanoelectrode. We investigated the effects of the low molecular weight antioxidant N-acetylcysteine (NAC) and the antioxidant enzyme superoxide dismutase 1 (SOD1) on the physiological and mechanical properties of neuronal cells using SICM. Using electrochemical method and SICM, NAC effectively reduces oxidative stress and restores Young's Modulus in SH-SY5Y cells exposed to hydrogen peroxide and Aβ42 oligomers. Our study first examined the influence of SOD1 on intracellular ROS levels in the presence of Aβ oligomers. The investigation into the effects of SOD1 and its nanoparticle form SOD1 on SH-SY5Y cells reveals impacts on mechanical properties and oxidative stress. The combined use of SICM and electrochemical measurements provided a comprehensive understanding of how oxidative stress, including that triggered by the Aβ oligomers affects the mechanical properties of cells.</p>\",\"PeriodicalId\":140,\"journal\":{\"name\":\"ChemBioChem\",\"volume\":\" \",\"pages\":\"e202400786\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemBioChem\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/cbic.202400786\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioChem","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbic.202400786","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Impact of Antioxidants on Mechanical Properties and ROS levels of Neuronal Cells Exposed to β-amyloid peptide.
This study aims to investigate the potential role of antioxidants in oxidative stress and its consequent impact on the mechanical properties of neuronal cells, particularly the stress induced by amyloid-beta (1-42) (Aβ42) aggregates. A key aspect of our research involved using scanning ion-conductance microscopy (SICM) to assess the mechanical properties (Young's modulus) of neuronal cells under oxidative stress. Reactive oxygen species (ROS) level was measured in single-cell using the electrochemical method by low-invasive Pt nanoelectrode. We investigated the effects of the low molecular weight antioxidant N-acetylcysteine (NAC) and the antioxidant enzyme superoxide dismutase 1 (SOD1) on the physiological and mechanical properties of neuronal cells using SICM. Using electrochemical method and SICM, NAC effectively reduces oxidative stress and restores Young's Modulus in SH-SY5Y cells exposed to hydrogen peroxide and Aβ42 oligomers. Our study first examined the influence of SOD1 on intracellular ROS levels in the presence of Aβ oligomers. The investigation into the effects of SOD1 and its nanoparticle form SOD1 on SH-SY5Y cells reveals impacts on mechanical properties and oxidative stress. The combined use of SICM and electrochemical measurements provided a comprehensive understanding of how oxidative stress, including that triggered by the Aβ oligomers affects the mechanical properties of cells.
期刊介绍:
ChemBioChem (Impact Factor 2018: 2.641) publishes important breakthroughs across all areas at the interface of chemistry and biology, including the fields of chemical biology, bioorganic chemistry, bioinorganic chemistry, synthetic biology, biocatalysis, bionanotechnology, and biomaterials. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and supported by the Asian Chemical Editorial Society (ACES).