估算胶体颗粒吸附模型参数的系统方法。

IF 3.8 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS Journal of Chromatography A Pub Date : 2024-11-09 DOI:10.1016/j.chroma.2024.465512
Oliver Lorenz-Cristea, Angela Wiebe, Judith Thoma, Maik Veelders, Till Briskot, Simon Kluters, Gang Wang, David Saleh , Federico Rischawy
{"title":"估算胶体颗粒吸附模型参数的系统方法。","authors":"Oliver Lorenz-Cristea,&nbsp;Angela Wiebe,&nbsp;Judith Thoma,&nbsp;Maik Veelders,&nbsp;Till Briskot,&nbsp;Simon Kluters,&nbsp;Gang Wang,&nbsp;David Saleh ,&nbsp;Federico Rischawy","doi":"10.1016/j.chroma.2024.465512","DOIUrl":null,"url":null,"abstract":"<div><div>The estimation of ion-exchange chromatography model parameters is crucial to enable efficient model-assisted biopharmaceutical downstream process development. Model calibration methods can be hindered by model limitations combined with parameter correlations, leading to time-consuming repeated parameter estimations. While Steric Mass Action isotherm estimation methods exist, there is a need for a systematic approach to estimate model parameters for an emerging Colloidal Particle Adsorption (CPA) model proposed by Briskot et al. This study presents a novel strategy that addresses this challenge, offering significant improvements.</div><div>Through a parameter sensitivity analysis, we identified key levers for improved CPA parameter estimation, enabling the prediction of elution behavior for low and high load densities in gradient and step elution mode. This analysis also revealed the correlation structure of parameters, allowing the establishment of a minimalized experimental data set for parameter estimation, by using one breakthrough, a high load and three low load density gradient elution experiments. Our workflow leverages a surrogate-assisted global-optimization tool, minimizing computationally expensive function evaluations during parameter fitting. Furthermore, we employed a customized objective function, specifically adapted to the model structure and sensitivity results, to enhance the solver's performance.</div><div>Our strategy was tested on three model proteins with molecular weights of approximately 50, 150 and 200 kDa using a strong cation exchange Poros 50 HS resin. Our final approach enabled high throughput CPA model calibration for single components. The resulting CPA models were able to describe non-binding protein-pulses, low and high-loaded gradient elution, break through, as well as isocratic elution experiments.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":"1739 ","pages":"Article 465512"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A systematic approach for estimating colloidal particle adsorption model parameters\",\"authors\":\"Oliver Lorenz-Cristea,&nbsp;Angela Wiebe,&nbsp;Judith Thoma,&nbsp;Maik Veelders,&nbsp;Till Briskot,&nbsp;Simon Kluters,&nbsp;Gang Wang,&nbsp;David Saleh ,&nbsp;Federico Rischawy\",\"doi\":\"10.1016/j.chroma.2024.465512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The estimation of ion-exchange chromatography model parameters is crucial to enable efficient model-assisted biopharmaceutical downstream process development. Model calibration methods can be hindered by model limitations combined with parameter correlations, leading to time-consuming repeated parameter estimations. While Steric Mass Action isotherm estimation methods exist, there is a need for a systematic approach to estimate model parameters for an emerging Colloidal Particle Adsorption (CPA) model proposed by Briskot et al. This study presents a novel strategy that addresses this challenge, offering significant improvements.</div><div>Through a parameter sensitivity analysis, we identified key levers for improved CPA parameter estimation, enabling the prediction of elution behavior for low and high load densities in gradient and step elution mode. This analysis also revealed the correlation structure of parameters, allowing the establishment of a minimalized experimental data set for parameter estimation, by using one breakthrough, a high load and three low load density gradient elution experiments. Our workflow leverages a surrogate-assisted global-optimization tool, minimizing computationally expensive function evaluations during parameter fitting. Furthermore, we employed a customized objective function, specifically adapted to the model structure and sensitivity results, to enhance the solver's performance.</div><div>Our strategy was tested on three model proteins with molecular weights of approximately 50, 150 and 200 kDa using a strong cation exchange Poros 50 HS resin. Our final approach enabled high throughput CPA model calibration for single components. The resulting CPA models were able to describe non-binding protein-pulses, low and high-loaded gradient elution, break through, as well as isocratic elution experiments.</div></div>\",\"PeriodicalId\":347,\"journal\":{\"name\":\"Journal of Chromatography A\",\"volume\":\"1739 \",\"pages\":\"Article 465512\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chromatography A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021967324008860\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography A","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021967324008860","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

离子交换色谱模型参数的估算对于实现高效的模型辅助生物制药下游工艺开发至关重要。模型校准方法可能会受到模型限制和参数相关性的阻碍,导致重复参数估计耗时。虽然存在立体质量作用等温线估算方法,但仍需要一种系统方法来估算 Briskot 等人提出的新兴胶体粒子吸附 (CPA) 模型的模型参数。通过参数敏感性分析,我们确定了改进 CPA 参数估计的关键杠杆,从而能够预测梯度和阶跃洗脱模式下低负荷密度和高负荷密度的洗脱行为。这项分析还揭示了参数的相关结构,通过使用一次突破性实验、一次高负荷实验和三次低负荷密度梯度洗脱实验,建立了用于参数估计的最小化实验数据集。我们的工作流程利用了代用辅助全局优化工具,最大限度地减少了参数拟合过程中计算昂贵的函数评估。此外,我们还采用了专门针对模型结构和灵敏度结果而定制的目标函数,以提高求解器的性能。我们使用强阳离子交换 Poros 50 HS 树脂对分子量约为 50、150 和 200 kDa 的三种模型蛋白质进行了测试。我们的最终方法实现了对单一成分的高通量 CPA 模型校准。由此产生的 CPA 模型能够描述非结合蛋白脉冲、低负荷和高负荷梯度洗脱、突破以及等度洗脱实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A systematic approach for estimating colloidal particle adsorption model parameters
The estimation of ion-exchange chromatography model parameters is crucial to enable efficient model-assisted biopharmaceutical downstream process development. Model calibration methods can be hindered by model limitations combined with parameter correlations, leading to time-consuming repeated parameter estimations. While Steric Mass Action isotherm estimation methods exist, there is a need for a systematic approach to estimate model parameters for an emerging Colloidal Particle Adsorption (CPA) model proposed by Briskot et al. This study presents a novel strategy that addresses this challenge, offering significant improvements.
Through a parameter sensitivity analysis, we identified key levers for improved CPA parameter estimation, enabling the prediction of elution behavior for low and high load densities in gradient and step elution mode. This analysis also revealed the correlation structure of parameters, allowing the establishment of a minimalized experimental data set for parameter estimation, by using one breakthrough, a high load and three low load density gradient elution experiments. Our workflow leverages a surrogate-assisted global-optimization tool, minimizing computationally expensive function evaluations during parameter fitting. Furthermore, we employed a customized objective function, specifically adapted to the model structure and sensitivity results, to enhance the solver's performance.
Our strategy was tested on three model proteins with molecular weights of approximately 50, 150 and 200 kDa using a strong cation exchange Poros 50 HS resin. Our final approach enabled high throughput CPA model calibration for single components. The resulting CPA models were able to describe non-binding protein-pulses, low and high-loaded gradient elution, break through, as well as isocratic elution experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chromatography A
Journal of Chromatography A 化学-分析化学
CiteScore
7.90
自引率
14.60%
发文量
742
审稿时长
45 days
期刊介绍: The Journal of Chromatography A provides a forum for the publication of original research and critical reviews on all aspects of fundamental and applied separation science. The scope of the journal includes chromatography and related techniques, electromigration techniques (e.g. electrophoresis, electrochromatography), hyphenated and other multi-dimensional techniques, sample preparation, and detection methods such as mass spectrometry. Contributions consist mainly of research papers dealing with the theory of separation methods, instrumental developments and analytical and preparative applications of general interest.
期刊最新文献
Multi–class cyanobacterial toxin analysis using hydrophilic interaction liquid chromatography–mass spectrometry In situ growth of hierarchical porous covalent organic framework coating for enhanced solid-phase microextraction of phenolic compounds Understanding the fundamentals of the on-off retention mechanism of oligonucleotides and their application to high throughput analysis Optimizing conditions in online RPLC × SFC for the analysis of complex samples containing neutral compounds: Solving injection issues. Designing boron-doped carbon dot-functionalized COFs for fluorescence screening and liquid chromatography tandem mass spectrometry detection of toxins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1