Peimei Yan, Xue Li, Yuhui He, Yanyan Zhang, Yingwanqi Wang, Jianing Liu, Shan Ren, Dingxiao Wu, Yu Zhao, Lin Ding, Weiwei Jia, Ying Lyu, Dan Xiao, Song Lin, Yan Lin
{"title":"芍药苷和 β-蜕皮激素通过抑制氧化应激和铁变态对心脏肥大具有协同保护作用","authors":"Peimei Yan, Xue Li, Yuhui He, Yanyan Zhang, Yingwanqi Wang, Jianing Liu, Shan Ren, Dingxiao Wu, Yu Zhao, Lin Ding, Weiwei Jia, Ying Lyu, Dan Xiao, Song Lin, Yan Lin","doi":"10.1016/j.cellsig.2024.111509","DOIUrl":null,"url":null,"abstract":"<p><p>Exploring feasible drugs for the treatment of pathological cardiac hypertrophy has always been a focus of cardiovascular disease research. Paeoniflorin (PF) and β-Ecdysterone (β-Ecd) are the main active components of Paeonia lactiflora and Achyranthes bidentata, which can be used for the treatment of cardiovascular diseases, but their mechanism of action remains unclear. This study focused on oxidative stress and ferroptosis to investigate the protective effects of PF and β-Ecd on cardiac hypertrophy in primary cardiomyocytes and C57BL/6 mice, utilizing the integration of CCK8 assays, ROS detection, molecular docking, real-time quantitative PCR, western blot, immunofluorescence, etc. The result of combination indices demonstrated a significant synergistic protective effect of PF and β-Ecd on cardiac hypertrophy. Furthermore, in vitro and in vivo studies further showed that the combination of PF and β-Ecd could improve the abnormalities of cell surface area, ANP, β-MHC, MDA, SOD, calcium ion, mitochondrial membrane potential and so on induced by cardiac hypertrophy through the inhibition effects of oxidative stress and iron metabolism, which might be closely related to the impact on the Nrf2/HO-1 and SLC7A11/GPX4 pathways. Altogether, this work revealed the mechanism of the combination of PF and β-Ecd in the treatment of cardiac hypertrophy from the aspects of suppressing oxidative stress and ferroptosis, aiming to promote effective treatment of the disease and the clinical application of PF and β-Ecd.</p>","PeriodicalId":9902,"journal":{"name":"Cellular signalling","volume":" ","pages":"111509"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The synergistic protective effects of paeoniflorin and β-ecdysterone against cardiac hypertrophy through suppressing oxidative stress and ferroptosis.\",\"authors\":\"Peimei Yan, Xue Li, Yuhui He, Yanyan Zhang, Yingwanqi Wang, Jianing Liu, Shan Ren, Dingxiao Wu, Yu Zhao, Lin Ding, Weiwei Jia, Ying Lyu, Dan Xiao, Song Lin, Yan Lin\",\"doi\":\"10.1016/j.cellsig.2024.111509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Exploring feasible drugs for the treatment of pathological cardiac hypertrophy has always been a focus of cardiovascular disease research. Paeoniflorin (PF) and β-Ecdysterone (β-Ecd) are the main active components of Paeonia lactiflora and Achyranthes bidentata, which can be used for the treatment of cardiovascular diseases, but their mechanism of action remains unclear. This study focused on oxidative stress and ferroptosis to investigate the protective effects of PF and β-Ecd on cardiac hypertrophy in primary cardiomyocytes and C57BL/6 mice, utilizing the integration of CCK8 assays, ROS detection, molecular docking, real-time quantitative PCR, western blot, immunofluorescence, etc. The result of combination indices demonstrated a significant synergistic protective effect of PF and β-Ecd on cardiac hypertrophy. Furthermore, in vitro and in vivo studies further showed that the combination of PF and β-Ecd could improve the abnormalities of cell surface area, ANP, β-MHC, MDA, SOD, calcium ion, mitochondrial membrane potential and so on induced by cardiac hypertrophy through the inhibition effects of oxidative stress and iron metabolism, which might be closely related to the impact on the Nrf2/HO-1 and SLC7A11/GPX4 pathways. Altogether, this work revealed the mechanism of the combination of PF and β-Ecd in the treatment of cardiac hypertrophy from the aspects of suppressing oxidative stress and ferroptosis, aiming to promote effective treatment of the disease and the clinical application of PF and β-Ecd.</p>\",\"PeriodicalId\":9902,\"journal\":{\"name\":\"Cellular signalling\",\"volume\":\" \",\"pages\":\"111509\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular signalling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cellsig.2024.111509\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular signalling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cellsig.2024.111509","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
The synergistic protective effects of paeoniflorin and β-ecdysterone against cardiac hypertrophy through suppressing oxidative stress and ferroptosis.
Exploring feasible drugs for the treatment of pathological cardiac hypertrophy has always been a focus of cardiovascular disease research. Paeoniflorin (PF) and β-Ecdysterone (β-Ecd) are the main active components of Paeonia lactiflora and Achyranthes bidentata, which can be used for the treatment of cardiovascular diseases, but their mechanism of action remains unclear. This study focused on oxidative stress and ferroptosis to investigate the protective effects of PF and β-Ecd on cardiac hypertrophy in primary cardiomyocytes and C57BL/6 mice, utilizing the integration of CCK8 assays, ROS detection, molecular docking, real-time quantitative PCR, western blot, immunofluorescence, etc. The result of combination indices demonstrated a significant synergistic protective effect of PF and β-Ecd on cardiac hypertrophy. Furthermore, in vitro and in vivo studies further showed that the combination of PF and β-Ecd could improve the abnormalities of cell surface area, ANP, β-MHC, MDA, SOD, calcium ion, mitochondrial membrane potential and so on induced by cardiac hypertrophy through the inhibition effects of oxidative stress and iron metabolism, which might be closely related to the impact on the Nrf2/HO-1 and SLC7A11/GPX4 pathways. Altogether, this work revealed the mechanism of the combination of PF and β-Ecd in the treatment of cardiac hypertrophy from the aspects of suppressing oxidative stress and ferroptosis, aiming to promote effective treatment of the disease and the clinical application of PF and β-Ecd.
期刊介绍:
Cellular Signalling publishes original research describing fundamental and clinical findings on the mechanisms, actions and structural components of cellular signalling systems in vitro and in vivo.
Cellular Signalling aims at full length research papers defining signalling systems ranging from microorganisms to cells, tissues and higher organisms.