Kerianne M. Wilson , Tjien Dwyer , Alison V. Ramirez , April M. Arquilla , Adele M.H. Seelke , Brian C. Trainor , Wendy Saltzman
{"title":"父母身份与雄性加利福尼亚小鼠(Peromyscus californicus)感觉皮层中催产素受体和血管加压素受体的基因表达。","authors":"Kerianne M. Wilson , Tjien Dwyer , Alison V. Ramirez , April M. Arquilla , Adele M.H. Seelke , Brian C. Trainor , Wendy Saltzman","doi":"10.1016/j.yhbeh.2024.105661","DOIUrl":null,"url":null,"abstract":"<div><div>The onset of parental care is associated with shifts in parents' perception of sensory stimuli from infants, mediated by neural plasticity in sensory systems. In new mothers, changes in auditory and olfactory processing have been linked to plasticity at several points along both sensory pathways, including cortical changes that are modulated, at least in part, by oxytocin. In males of biparental species, vasopressin, in addition to oxytocin, is important for modulating parental behavior; however, little is known about sensory plasticity in new fathers. We examined variation in the mRNA expression of oxytocin and vasopressin receptors (<em>Oxtr</em> and <em>Avpr1a)</em> in sensory cortices of virgin males, paired nonbreeding males, and new fathers in the biparental California mouse (<em>Peromyscus californicus</em>), and variation among cortices using the visual cortex for comparison. Reproductive status did not affect gene expression for either receptor, but compared to the visual cortex, expression of both receptors was higher in the left auditory cortex and lower in the anterior olfactory nucleus. Additionally, expression for both receptors was higher in the left auditory cortex compared to the right auditory cortex. While oxytocin and vasopressin receptor expression may remain stable across reproductive stages in male California mice, our findings provide support for auditory cortex lateralization, with the left auditory cortex possibly displaying higher sensitivity to both oxytocin and vasopressin compared to the right.</div></div>","PeriodicalId":13001,"journal":{"name":"Hormones and Behavior","volume":"167 ","pages":"Article 105661"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parenthood and gene expression of oxytocin receptors and vasopressin receptors in sensory cortices of the male California mouse (Peromyscus californicus)\",\"authors\":\"Kerianne M. Wilson , Tjien Dwyer , Alison V. Ramirez , April M. Arquilla , Adele M.H. Seelke , Brian C. Trainor , Wendy Saltzman\",\"doi\":\"10.1016/j.yhbeh.2024.105661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The onset of parental care is associated with shifts in parents' perception of sensory stimuli from infants, mediated by neural plasticity in sensory systems. In new mothers, changes in auditory and olfactory processing have been linked to plasticity at several points along both sensory pathways, including cortical changes that are modulated, at least in part, by oxytocin. In males of biparental species, vasopressin, in addition to oxytocin, is important for modulating parental behavior; however, little is known about sensory plasticity in new fathers. We examined variation in the mRNA expression of oxytocin and vasopressin receptors (<em>Oxtr</em> and <em>Avpr1a)</em> in sensory cortices of virgin males, paired nonbreeding males, and new fathers in the biparental California mouse (<em>Peromyscus californicus</em>), and variation among cortices using the visual cortex for comparison. Reproductive status did not affect gene expression for either receptor, but compared to the visual cortex, expression of both receptors was higher in the left auditory cortex and lower in the anterior olfactory nucleus. Additionally, expression for both receptors was higher in the left auditory cortex compared to the right auditory cortex. While oxytocin and vasopressin receptor expression may remain stable across reproductive stages in male California mice, our findings provide support for auditory cortex lateralization, with the left auditory cortex possibly displaying higher sensitivity to both oxytocin and vasopressin compared to the right.</div></div>\",\"PeriodicalId\":13001,\"journal\":{\"name\":\"Hormones and Behavior\",\"volume\":\"167 \",\"pages\":\"Article 105661\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hormones and Behavior\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0018506X24001867\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hormones and Behavior","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0018506X24001867","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Parenthood and gene expression of oxytocin receptors and vasopressin receptors in sensory cortices of the male California mouse (Peromyscus californicus)
The onset of parental care is associated with shifts in parents' perception of sensory stimuli from infants, mediated by neural plasticity in sensory systems. In new mothers, changes in auditory and olfactory processing have been linked to plasticity at several points along both sensory pathways, including cortical changes that are modulated, at least in part, by oxytocin. In males of biparental species, vasopressin, in addition to oxytocin, is important for modulating parental behavior; however, little is known about sensory plasticity in new fathers. We examined variation in the mRNA expression of oxytocin and vasopressin receptors (Oxtr and Avpr1a) in sensory cortices of virgin males, paired nonbreeding males, and new fathers in the biparental California mouse (Peromyscus californicus), and variation among cortices using the visual cortex for comparison. Reproductive status did not affect gene expression for either receptor, but compared to the visual cortex, expression of both receptors was higher in the left auditory cortex and lower in the anterior olfactory nucleus. Additionally, expression for both receptors was higher in the left auditory cortex compared to the right auditory cortex. While oxytocin and vasopressin receptor expression may remain stable across reproductive stages in male California mice, our findings provide support for auditory cortex lateralization, with the left auditory cortex possibly displaying higher sensitivity to both oxytocin and vasopressin compared to the right.
期刊介绍:
Hormones and Behavior publishes original research articles, reviews and special issues concerning hormone-brain-behavior relationships, broadly defined. The journal''s scope ranges from laboratory and field studies concerning neuroendocrine as well as endocrine mechanisms controlling the development or adult expression of behavior to studies concerning the environmental control and evolutionary significance of hormone-behavior relationships. The journal welcomes studies conducted on species ranging from invertebrates to mammals, including humans.