一种常见的邻苯二甲酸酯替代品会破坏年轻成年小鼠的卵巢功能。

IF 3.3 4区 医学 Q2 REPRODUCTIVE BIOLOGY Reproductive toxicology Pub Date : 2024-11-15 DOI:10.1016/j.reprotox.2024.108748
Courtney Potts, Allison Harbolic, Maire Murphy, Michelle Jojy, Christine Hanna, Maira Nadeem, Hanin Alahmadi, Stephanie Martinez, Genoa R Warner
{"title":"一种常见的邻苯二甲酸酯替代品会破坏年轻成年小鼠的卵巢功能。","authors":"Courtney Potts, Allison Harbolic, Maire Murphy, Michelle Jojy, Christine Hanna, Maira Nadeem, Hanin Alahmadi, Stephanie Martinez, Genoa R Warner","doi":"10.1016/j.reprotox.2024.108748","DOIUrl":null,"url":null,"abstract":"<p><p>Di-2-ethylhexyl terephthalate (DEHTP) is a replacement for its structural isomer di-2-ethylhexyl phthalate (DEHP), a known endocrine disrupting chemical and ovarian toxicant. DEHTP is used as a plasticizer in polyvinyl chloride products and its metabolites are increasingly found in biomonitoring studies at levels similar to phthalates. However, little is known about the effects of DEHTP on the ovary. In this research, we tested the hypothesis that DEHTP is an ovarian toxicant and likely endocrine disrupting chemical like its isomer DEHP. The impact of environmentally relevant exposure to DEHTP and/or its metabolite mono-2-ethylhexyl terephthalate (MEHTP) on the mouse ovary was investigated in vivo and in vitro. For the in vivo studies, young adult CD-1 mice were orally dosed with vehicle, 10 µg/kg, 100 µg/kg, or 100 mg/kg of DEHTP for 10 days. For the in vitro studies, isolated untreated ovarian follicles were exposed to vehicle, 0.1, 1, 10, or 100 µg/mL of DEHTP or MEHTP. Follicle counts, hormone levels, and gene expression of steroidogenic enzymes, cell cycle regulators, and apoptosis factors were analyzed. In vivo, DEHTP exposure altered follicle counts compared to control. DEHTP exposure also decreased expression of cell cycle regulators and apoptotic factors compared to control. In vitro, follicle growth was reduced compared to controls, and expression of the cell cycle regulator Cdkn2b was increased. Overall, these results suggest that DEHTP and MEHTP may be ovarian toxicants at low doses and should be subjected to further scrutiny for reproductive toxicity due to their similar structures to phthalates.</p>","PeriodicalId":21137,"journal":{"name":"Reproductive toxicology","volume":" ","pages":"108748"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A common phthalate replacement disrupts ovarian function in young adult mice.\",\"authors\":\"Courtney Potts, Allison Harbolic, Maire Murphy, Michelle Jojy, Christine Hanna, Maira Nadeem, Hanin Alahmadi, Stephanie Martinez, Genoa R Warner\",\"doi\":\"10.1016/j.reprotox.2024.108748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Di-2-ethylhexyl terephthalate (DEHTP) is a replacement for its structural isomer di-2-ethylhexyl phthalate (DEHP), a known endocrine disrupting chemical and ovarian toxicant. DEHTP is used as a plasticizer in polyvinyl chloride products and its metabolites are increasingly found in biomonitoring studies at levels similar to phthalates. However, little is known about the effects of DEHTP on the ovary. In this research, we tested the hypothesis that DEHTP is an ovarian toxicant and likely endocrine disrupting chemical like its isomer DEHP. The impact of environmentally relevant exposure to DEHTP and/or its metabolite mono-2-ethylhexyl terephthalate (MEHTP) on the mouse ovary was investigated in vivo and in vitro. For the in vivo studies, young adult CD-1 mice were orally dosed with vehicle, 10 µg/kg, 100 µg/kg, or 100 mg/kg of DEHTP for 10 days. For the in vitro studies, isolated untreated ovarian follicles were exposed to vehicle, 0.1, 1, 10, or 100 µg/mL of DEHTP or MEHTP. Follicle counts, hormone levels, and gene expression of steroidogenic enzymes, cell cycle regulators, and apoptosis factors were analyzed. In vivo, DEHTP exposure altered follicle counts compared to control. DEHTP exposure also decreased expression of cell cycle regulators and apoptotic factors compared to control. In vitro, follicle growth was reduced compared to controls, and expression of the cell cycle regulator Cdkn2b was increased. Overall, these results suggest that DEHTP and MEHTP may be ovarian toxicants at low doses and should be subjected to further scrutiny for reproductive toxicity due to their similar structures to phthalates.</p>\",\"PeriodicalId\":21137,\"journal\":{\"name\":\"Reproductive toxicology\",\"volume\":\" \",\"pages\":\"108748\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reproductive toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.reprotox.2024.108748\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"REPRODUCTIVE BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproductive toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.reprotox.2024.108748","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

邻苯二甲酸二-2-乙基己酯(DEHTP)是其结构异构体邻苯二甲酸二-2-乙基己酯(DEHP)的替代品,后者是一种已知的内分泌干扰化学品和卵巢毒物。DEHTP 在聚氯乙烯产品中用作增塑剂,其代谢物在生物监测研究中的含量越来越接近邻苯二甲酸盐。然而,人们对 DEHTP 对卵巢的影响知之甚少。在这项研究中,我们测试了一种假设,即 DEHTP 与它的异构体 DEHP 一样,是一种卵巢毒性物质,而且很可能是一种干扰内分泌的化学物质。我们在体内和体外研究了小鼠暴露于 DEHTP 和/或其代谢物对苯二甲酸单-2-乙基己酯(MEHTP)对卵巢的影响。在体内研究中,年轻的成年 CD-1 小鼠连续 10 天分别口服载体、10µg/kg、100µg/kg 或 100mg/kg DEHTP。在体外研究中,分离出的未经处理的卵巢卵泡暴露于载体、0.1、1、10或100µg/mL的DEHTP或MEHTP。对卵泡数量、激素水平以及类固醇生成酶、细胞周期调节因子和凋亡因子的基因表达进行了分析。在体内,与对照组相比,暴露于 DEHTP 会改变卵泡数量。与对照组相比,暴露于DEHTP还会降低细胞周期调节因子和细胞凋亡因子的表达。在体外,与对照组相比,卵泡生长减少,细胞周期调节因子 Cdkn2b 的表达增加。总之,这些结果表明,DEHTP 和 MEHTP 可能是低剂量的卵巢毒物,由于其结构与邻苯二甲酸盐相似,因此应进一步研究其生殖毒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A common phthalate replacement disrupts ovarian function in young adult mice.

Di-2-ethylhexyl terephthalate (DEHTP) is a replacement for its structural isomer di-2-ethylhexyl phthalate (DEHP), a known endocrine disrupting chemical and ovarian toxicant. DEHTP is used as a plasticizer in polyvinyl chloride products and its metabolites are increasingly found in biomonitoring studies at levels similar to phthalates. However, little is known about the effects of DEHTP on the ovary. In this research, we tested the hypothesis that DEHTP is an ovarian toxicant and likely endocrine disrupting chemical like its isomer DEHP. The impact of environmentally relevant exposure to DEHTP and/or its metabolite mono-2-ethylhexyl terephthalate (MEHTP) on the mouse ovary was investigated in vivo and in vitro. For the in vivo studies, young adult CD-1 mice were orally dosed with vehicle, 10 µg/kg, 100 µg/kg, or 100 mg/kg of DEHTP for 10 days. For the in vitro studies, isolated untreated ovarian follicles were exposed to vehicle, 0.1, 1, 10, or 100 µg/mL of DEHTP or MEHTP. Follicle counts, hormone levels, and gene expression of steroidogenic enzymes, cell cycle regulators, and apoptosis factors were analyzed. In vivo, DEHTP exposure altered follicle counts compared to control. DEHTP exposure also decreased expression of cell cycle regulators and apoptotic factors compared to control. In vitro, follicle growth was reduced compared to controls, and expression of the cell cycle regulator Cdkn2b was increased. Overall, these results suggest that DEHTP and MEHTP may be ovarian toxicants at low doses and should be subjected to further scrutiny for reproductive toxicity due to their similar structures to phthalates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reproductive toxicology
Reproductive toxicology 生物-毒理学
CiteScore
6.50
自引率
3.00%
发文量
131
审稿时长
45 days
期刊介绍: Drawing from a large number of disciplines, Reproductive Toxicology publishes timely, original research on the influence of chemical and physical agents on reproduction. Written by and for obstetricians, pediatricians, embryologists, teratologists, geneticists, toxicologists, andrologists, and others interested in detecting potential reproductive hazards, the journal is a forum for communication among researchers and practitioners. Articles focus on the application of in vitro, animal and clinical research to the practice of clinical medicine. All aspects of reproduction are within the scope of Reproductive Toxicology, including the formation and maturation of male and female gametes, sexual function, the events surrounding the fusion of gametes and the development of the fertilized ovum, nourishment and transport of the conceptus within the genital tract, implantation, embryogenesis, intrauterine growth, placentation and placental function, parturition, lactation and neonatal survival. Adverse reproductive effects in males will be considered as significant as adverse effects occurring in females. To provide a balanced presentation of approaches, equal emphasis will be given to clinical and animal or in vitro work. Typical end points that will be studied by contributors include infertility, sexual dysfunction, spontaneous abortion, malformations, abnormal histogenesis, stillbirth, intrauterine growth retardation, prematurity, behavioral abnormalities, and perinatal mortality.
期刊最新文献
COULD PROBIOTICS BE USED AS A NOVEL THERAPEUTIC APPROACH TO ALLEVIATE THE REPRODUCTIVE AND NEUROBEHAVIORAL SIDE EFFECTS OF SERTRALINE? A STUDY IN MALE MICE. Critical appraisal of the Expert Knowledge Elicitation (EKE) methodology to identify uncertainties in building cumulative assessment groups for craniofacial alterations. 'Evaluation of reproductive toxicology studies according the OECD Guidance Document 443 - claim and reality'. Assessing male reproductive toxicity of environmental pollutant di-ethylhexyl phthalate with network toxicology and molecular docking strategy Neurocognitive impairments in rat offspring after maternal exposure to vortioxetine: Involvement of BDNF, apoptosis and cholinergic mediated signaling pathways.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1