肌动蛋白等变体 ACT2 介导的细胞叶绿素平衡调节拟南芥侧根器官的发生

Aya Hanzawa, Arifa Ahamed Rahman, Abidur Rahman
{"title":"肌动蛋白等变体 ACT2 介导的细胞叶绿素平衡调节拟南芥侧根器官的发生","authors":"Aya Hanzawa, Arifa Ahamed Rahman, Abidur Rahman","doi":"10.1002/cm.21956","DOIUrl":null,"url":null,"abstract":"<p><p>Lateral root (LR) organogenesis is regulated by cellular flux of auxin within pericycle cells, which depends on the membrane distribution and polar localization of auxin carrier proteins. The correct distribution of auxin carrier proteins relies on the intracellular trafficking of these proteins aided by filamentous actin as a track. However, the precise role of actin in lateral root development is still elusive. Here, using vegetative class actin isovariant mutants, we revealed that loss of actin isovariant ACT8 led to increased lateral root formation. The distribution of auxin within pericycle cells was altered in act8 mutant, primarily due to the altered distribution of AUX1 and PIN7. Interestingly, incorporation of act2 mutant in act8 background (act2act8) effectively nullified the LR phenotype observed in act8 mutant, indicating that ACT2 plays an important role in LR development. To explore further, we investigated the possibility that the act8 mutant's LR phenotype and cellular auxin distribution resulted from ACT2 overexpression. Consistent with the idea, enhanced lateral root formation, altered AUX1, PIN7 expression, and auxin distribution in pericycle cells were observed in ACT2 overexpression lines. Collectively, these results suggest that actin isovariant ACT2 but not ACT8 plays a pivotal role in regulating source-to-sink auxin distribution during lateral root organogenesis.</p>","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Actin Isovariant ACT2-Mediated Cellular Auxin Homeostasis Regulates Lateral Root Organogenesis in Arabidopsis thaliana.\",\"authors\":\"Aya Hanzawa, Arifa Ahamed Rahman, Abidur Rahman\",\"doi\":\"10.1002/cm.21956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lateral root (LR) organogenesis is regulated by cellular flux of auxin within pericycle cells, which depends on the membrane distribution and polar localization of auxin carrier proteins. The correct distribution of auxin carrier proteins relies on the intracellular trafficking of these proteins aided by filamentous actin as a track. However, the precise role of actin in lateral root development is still elusive. Here, using vegetative class actin isovariant mutants, we revealed that loss of actin isovariant ACT8 led to increased lateral root formation. The distribution of auxin within pericycle cells was altered in act8 mutant, primarily due to the altered distribution of AUX1 and PIN7. Interestingly, incorporation of act2 mutant in act8 background (act2act8) effectively nullified the LR phenotype observed in act8 mutant, indicating that ACT2 plays an important role in LR development. To explore further, we investigated the possibility that the act8 mutant's LR phenotype and cellular auxin distribution resulted from ACT2 overexpression. Consistent with the idea, enhanced lateral root formation, altered AUX1, PIN7 expression, and auxin distribution in pericycle cells were observed in ACT2 overexpression lines. Collectively, these results suggest that actin isovariant ACT2 but not ACT8 plays a pivotal role in regulating source-to-sink auxin distribution during lateral root organogenesis.</p>\",\"PeriodicalId\":72766,\"journal\":{\"name\":\"Cytoskeleton (Hoboken, N.J.)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytoskeleton (Hoboken, N.J.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/cm.21956\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytoskeleton (Hoboken, N.J.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cm.21956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

侧根(LR)的器官发生受周缘细胞内的细胞辅素通量调节,而细胞辅素通量取决于辅素载体蛋白的膜分布和极性定位。辅酶载体蛋白的正确分布依赖于这些蛋白在丝状肌动蛋白的帮助下在细胞内的运输。然而,肌动蛋白在侧根发育过程中的确切作用仍然难以捉摸。在这里,我们利用无性类肌动蛋白等变体突变体,发现肌动蛋白等变体ACT8的缺失会导致侧根形成增加。在act8突变体中,周细胞内的辅素分布发生了改变,这主要是由于AUX1和PIN7的分布发生了改变。有趣的是,在act8背景中加入act2突变体(act2act8)能有效抵消在act8突变体中观察到的LR表型,这表明ACT2在LR发育中起着重要作用。为了进一步探讨,我们研究了 act8 突变体的 LR 表型和细胞辅助素分布是由 ACT2 过表达引起的可能性。与这一想法一致的是,在 ACT2 过表达株系中观察到侧根形成增强、AUX1、PIN7 表达改变以及周细胞中的辅素分布。总之,这些结果表明,在侧根器官发生过程中,肌动蛋白等变体 ACT2 而不是 ACT8 在调节源-汇辅助素分布中起着关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Actin Isovariant ACT2-Mediated Cellular Auxin Homeostasis Regulates Lateral Root Organogenesis in Arabidopsis thaliana.

Lateral root (LR) organogenesis is regulated by cellular flux of auxin within pericycle cells, which depends on the membrane distribution and polar localization of auxin carrier proteins. The correct distribution of auxin carrier proteins relies on the intracellular trafficking of these proteins aided by filamentous actin as a track. However, the precise role of actin in lateral root development is still elusive. Here, using vegetative class actin isovariant mutants, we revealed that loss of actin isovariant ACT8 led to increased lateral root formation. The distribution of auxin within pericycle cells was altered in act8 mutant, primarily due to the altered distribution of AUX1 and PIN7. Interestingly, incorporation of act2 mutant in act8 background (act2act8) effectively nullified the LR phenotype observed in act8 mutant, indicating that ACT2 plays an important role in LR development. To explore further, we investigated the possibility that the act8 mutant's LR phenotype and cellular auxin distribution resulted from ACT2 overexpression. Consistent with the idea, enhanced lateral root formation, altered AUX1, PIN7 expression, and auxin distribution in pericycle cells were observed in ACT2 overexpression lines. Collectively, these results suggest that actin isovariant ACT2 but not ACT8 plays a pivotal role in regulating source-to-sink auxin distribution during lateral root organogenesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Actin Isovariant ACT2-Mediated Cellular Auxin Homeostasis Regulates Lateral Root Organogenesis in Arabidopsis thaliana. Analyses of Off-Target Effects on Cardiac and Skeletal Muscles by Berberine, a Drug Used to Treat Cancers and Induce Weight Loss. Alteration of Cytoskeletal Proteins Leads to Retinal Degeneration in Drosophila. SEC-SAXS/MC Ensemble Structural Studies of the Microtubule Binding Protein Cdt1 Show Monomeric, Folded-Over Conformations. Myosins on the Move: A Special Issue on Myosins and Myosin-Dependent Cell Processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1