利用动态振幅估计和片断近似量子编译进行能量风险分析

Kumar Ghosh;Kavitha Yogaraj;Gabriele Agliardi;Piergiacomo Sabino;Marina Fernández-Campoamor;Juan Bernabé-Moreno;Giorgio Cortiana;Omar Shehab;Corey O'Meara
{"title":"利用动态振幅估计和片断近似量子编译进行能量风险分析","authors":"Kumar Ghosh;Kavitha Yogaraj;Gabriele Agliardi;Piergiacomo Sabino;Marina Fernández-Campoamor;Juan Bernabé-Moreno;Giorgio Cortiana;Omar Shehab;Corey O'Meara","doi":"10.1109/TQE.2024.3425969","DOIUrl":null,"url":null,"abstract":"In this article, we generalize the approximate quantum compiling algorithm into a new method for \n<sc>cnot</small>\n-depth reduction, which is apt to process wide target quantum circuits. Combining this method with state-of-the-art techniques for error mitigation and circuit compiling, we present a ten-qubit experimental demonstration of iterative amplitude estimation on a quantum computer. The target application is a derivation of the expected value of contract portfolios in the energy industry. In parallel, we also introduce a new variant of the quantum amplitude estimation algorithm, which we call dynamic amplitude estimation, as it is based on the dynamic circuit capability of quantum devices. The algorithm achieves a reduction in the circuit width in the order of the binary precision compared to the typical implementation of quantum amplitude estimation, while simultaneously decreasing the number of quantum–classical iterations (again in the order of the binary precision) compared to the iterative amplitude estimation. The calculation of the expected value, value at risk, and conditional value at risk of contract portfolios on quantum hardware provides a proof of principle of the new algorithm.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-17"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10592808","citationCount":"0","resultStr":"{\"title\":\"Energy Risk Analysis With Dynamic Amplitude Estimation and Piecewise Approximate Quantum Compiling\",\"authors\":\"Kumar Ghosh;Kavitha Yogaraj;Gabriele Agliardi;Piergiacomo Sabino;Marina Fernández-Campoamor;Juan Bernabé-Moreno;Giorgio Cortiana;Omar Shehab;Corey O'Meara\",\"doi\":\"10.1109/TQE.2024.3425969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we generalize the approximate quantum compiling algorithm into a new method for \\n<sc>cnot</small>\\n-depth reduction, which is apt to process wide target quantum circuits. Combining this method with state-of-the-art techniques for error mitigation and circuit compiling, we present a ten-qubit experimental demonstration of iterative amplitude estimation on a quantum computer. The target application is a derivation of the expected value of contract portfolios in the energy industry. In parallel, we also introduce a new variant of the quantum amplitude estimation algorithm, which we call dynamic amplitude estimation, as it is based on the dynamic circuit capability of quantum devices. The algorithm achieves a reduction in the circuit width in the order of the binary precision compared to the typical implementation of quantum amplitude estimation, while simultaneously decreasing the number of quantum–classical iterations (again in the order of the binary precision) compared to the iterative amplitude estimation. The calculation of the expected value, value at risk, and conditional value at risk of contract portfolios on quantum hardware provides a proof of principle of the new algorithm.\",\"PeriodicalId\":100644,\"journal\":{\"name\":\"IEEE Transactions on Quantum Engineering\",\"volume\":\"5 \",\"pages\":\"1-17\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10592808\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Quantum Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10592808/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Quantum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10592808/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这篇文章中,我们将近似量子编译算法概括为一种新的节点深度缩减方法,这种方法适用于处理宽目标量子电路。将这种方法与最先进的误差缓解和电路编译技术相结合,我们展示了在量子计算机上进行迭代振幅估计的十量子比特实验演示。目标应用是推导能源行业合同组合的预期值。同时,我们还介绍了量子振幅估计算法的一种新变体,我们称之为动态振幅估计,因为它是基于量子设备的动态电路能力。与量子振幅估计的典型实现相比,该算法实现了二进制精度数量级的电路宽度缩减,同时与迭代振幅估计相比,减少了量子经典迭代次数(同样是二进制精度数量级)。在量子硬件上计算合约组合的预期值、风险值和条件风险值,证明了新算法的原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy Risk Analysis With Dynamic Amplitude Estimation and Piecewise Approximate Quantum Compiling
In this article, we generalize the approximate quantum compiling algorithm into a new method for cnot -depth reduction, which is apt to process wide target quantum circuits. Combining this method with state-of-the-art techniques for error mitigation and circuit compiling, we present a ten-qubit experimental demonstration of iterative amplitude estimation on a quantum computer. The target application is a derivation of the expected value of contract portfolios in the energy industry. In parallel, we also introduce a new variant of the quantum amplitude estimation algorithm, which we call dynamic amplitude estimation, as it is based on the dynamic circuit capability of quantum devices. The algorithm achieves a reduction in the circuit width in the order of the binary precision compared to the typical implementation of quantum amplitude estimation, while simultaneously decreasing the number of quantum–classical iterations (again in the order of the binary precision) compared to the iterative amplitude estimation. The calculation of the expected value, value at risk, and conditional value at risk of contract portfolios on quantum hardware provides a proof of principle of the new algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
0.00%
发文量
0
期刊最新文献
IEEE Transactions on Quantum Engineering Publication Information Dissipative Variational Quantum Algorithms for Gibbs State Preparation TAQNet: Traffic-Aware Minimum-Cost Quantum Communication Network Planning FPGA-Based Synchronization of Frequency-Domain Interferometer for QKD Grover's Oracle for the Shortest Vector Problem and Its Application in Hybrid Classical–Quantum Solvers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1