集成染料敏化太阳能电池和超级电容器:未来能源应用的便携式动力包

IF 3.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Science Pub Date : 2024-11-08 DOI:10.1007/s10853-024-10344-w
Juliya K. Davis, Jelby George, Manoj Balachandran
{"title":"集成染料敏化太阳能电池和超级电容器:未来能源应用的便携式动力包","authors":"Juliya K. Davis,&nbsp;Jelby George,&nbsp;Manoj Balachandran","doi":"10.1007/s10853-024-10344-w","DOIUrl":null,"url":null,"abstract":"<div><p>Integrating energy storage and harvesting devices have been major challenges and significant needs of the time for upcoming energy applications. Photosupercapacitors are combined solar cell-supercapacitor devices which can provide next-generation portable powerpacks. Owing to advantages like economic and environmental friendliness, dye-sensitized solar cells (DSSCs) offer vast potential for being integrated with energy accumulation devices like supercapacitors. Over the past few years, various types of harvesting cum storage power devices combining DSSCs and supercapacitors have been reported. Over time the devices have improved in both performance and stability providing a broad outlook to possible future advancements including commercialization. We still have many challenges that are yet to be resolved in order to take these powerpacks to the next level of applications in portable and wearable electronics and communication devices. In this context, a detailed analysis and comparison of already reported photo-powered integrated supercapacitors based on DSSCs would give further insights into future advancements. In this review, we have discussed the development of photosupercapacitors, their fabrication strategies, and different materials used as counter electrodes, electrolytes, and dye sensitizers.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"59 43","pages":"20176 - 20203"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating dye-sensitized solar cells and supercapacitors: portable powerpacks for future energy applications\",\"authors\":\"Juliya K. Davis,&nbsp;Jelby George,&nbsp;Manoj Balachandran\",\"doi\":\"10.1007/s10853-024-10344-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Integrating energy storage and harvesting devices have been major challenges and significant needs of the time for upcoming energy applications. Photosupercapacitors are combined solar cell-supercapacitor devices which can provide next-generation portable powerpacks. Owing to advantages like economic and environmental friendliness, dye-sensitized solar cells (DSSCs) offer vast potential for being integrated with energy accumulation devices like supercapacitors. Over the past few years, various types of harvesting cum storage power devices combining DSSCs and supercapacitors have been reported. Over time the devices have improved in both performance and stability providing a broad outlook to possible future advancements including commercialization. We still have many challenges that are yet to be resolved in order to take these powerpacks to the next level of applications in portable and wearable electronics and communication devices. In this context, a detailed analysis and comparison of already reported photo-powered integrated supercapacitors based on DSSCs would give further insights into future advancements. In this review, we have discussed the development of photosupercapacitors, their fabrication strategies, and different materials used as counter electrodes, electrolytes, and dye sensitizers.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":645,\"journal\":{\"name\":\"Journal of Materials Science\",\"volume\":\"59 43\",\"pages\":\"20176 - 20203\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10853-024-10344-w\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-024-10344-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在即将到来的能源应用中,整合能源存储和收集装置一直是重大挑战和重要需求。光电超级电容器是太阳能电池和超级电容器的组合装置,可提供下一代便携式电源。由于染料敏化太阳能电池(DSSC)具有经济和环保等优点,因此与超级电容器等储能装置集成具有巨大的潜力。在过去的几年里,人们报道了各种类型的结合了染料敏化太阳能电池和超级电容器的收集和存储电力设备。随着时间的推移,这些设备在性能和稳定性方面都有了很大的提高,为未来的发展(包括商业化)提供了广阔的前景。我们仍有许多挑战尚待解决,以便将这些动力组件在便携式和可穿戴电子设备及通信设备中的应用提升到一个新的水平。在这种情况下,对已报道的基于 DSSC 的光供电集成超级电容器进行详细分析和比较,将有助于进一步了解未来的发展。在这篇综述中,我们讨论了光电超级电容器的发展、制造策略以及用作对电极、电解质和染料敏化剂的不同材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrating dye-sensitized solar cells and supercapacitors: portable powerpacks for future energy applications

Integrating energy storage and harvesting devices have been major challenges and significant needs of the time for upcoming energy applications. Photosupercapacitors are combined solar cell-supercapacitor devices which can provide next-generation portable powerpacks. Owing to advantages like economic and environmental friendliness, dye-sensitized solar cells (DSSCs) offer vast potential for being integrated with energy accumulation devices like supercapacitors. Over the past few years, various types of harvesting cum storage power devices combining DSSCs and supercapacitors have been reported. Over time the devices have improved in both performance and stability providing a broad outlook to possible future advancements including commercialization. We still have many challenges that are yet to be resolved in order to take these powerpacks to the next level of applications in portable and wearable electronics and communication devices. In this context, a detailed analysis and comparison of already reported photo-powered integrated supercapacitors based on DSSCs would give further insights into future advancements. In this review, we have discussed the development of photosupercapacitors, their fabrication strategies, and different materials used as counter electrodes, electrolytes, and dye sensitizers.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science
Journal of Materials Science 工程技术-材料科学:综合
CiteScore
7.90
自引率
4.40%
发文量
1297
审稿时长
2.4 months
期刊介绍: The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.
期刊最新文献
The influence of entanglement degree controlled by complex shear field on the performance of long-chain branched polypropylene Investigation on the microstructure and mechanical properties of 5356 aluminum alloy wire in continuous casting direct rolling process Crystallization behavior and thermal properties of octa-phenyl-substituted silsesquioxane-modified polylactide (PLA) Integrating dye-sensitized solar cells and supercapacitors: portable powerpacks for future energy applications High-security organic PVDF-coated SiO2 aerogel lithium battery separator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1