Jikui Wang, Huiyu Duan, Cuihong Zhang, Feiping Nie
{"title":"基于相对节点图的稳健自训练算法","authors":"Jikui Wang, Huiyu Duan, Cuihong Zhang, Feiping Nie","doi":"10.1007/s10489-024-06062-0","DOIUrl":null,"url":null,"abstract":"<div><p>Self-training algorithm is a well-known framework of semi-supervised learning. How to select high-confidence samples is the key step for self-training algorithm. If high-confidence examples with incorrect labels are employed to train the classifier, the error will get worse during iterations. To improve the quality of high-confidence samples, a novel data editing technique termed Relative Node Graph Editing (RNGE) is put forward. Say concretely, mass estimation is used to calculate the density and peak of each sample to build a prototype tree to reveal the underlying spatial structure of the data. Then, we define the Relative Node Graph (RNG) for each sample. Finally, the mislabeled samples in the candidate high-confidence sample set are identified by hypothesis test based on RNG. Combined above, we propose a Robust Self-training Algorithm based on Relative Node Graph (STRNG), which uses RNGE to identify mislabeled samples and edit them. The experimental results show that the proposed algorithm can improve the performance of the self-training algorithm.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A robust self-training algorithm based on relative node graph\",\"authors\":\"Jikui Wang, Huiyu Duan, Cuihong Zhang, Feiping Nie\",\"doi\":\"10.1007/s10489-024-06062-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Self-training algorithm is a well-known framework of semi-supervised learning. How to select high-confidence samples is the key step for self-training algorithm. If high-confidence examples with incorrect labels are employed to train the classifier, the error will get worse during iterations. To improve the quality of high-confidence samples, a novel data editing technique termed Relative Node Graph Editing (RNGE) is put forward. Say concretely, mass estimation is used to calculate the density and peak of each sample to build a prototype tree to reveal the underlying spatial structure of the data. Then, we define the Relative Node Graph (RNG) for each sample. Finally, the mislabeled samples in the candidate high-confidence sample set are identified by hypothesis test based on RNG. Combined above, we propose a Robust Self-training Algorithm based on Relative Node Graph (STRNG), which uses RNGE to identify mislabeled samples and edit them. The experimental results show that the proposed algorithm can improve the performance of the self-training algorithm.</p></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-024-06062-0\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-06062-0","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A robust self-training algorithm based on relative node graph
Self-training algorithm is a well-known framework of semi-supervised learning. How to select high-confidence samples is the key step for self-training algorithm. If high-confidence examples with incorrect labels are employed to train the classifier, the error will get worse during iterations. To improve the quality of high-confidence samples, a novel data editing technique termed Relative Node Graph Editing (RNGE) is put forward. Say concretely, mass estimation is used to calculate the density and peak of each sample to build a prototype tree to reveal the underlying spatial structure of the data. Then, we define the Relative Node Graph (RNG) for each sample. Finally, the mislabeled samples in the candidate high-confidence sample set are identified by hypothesis test based on RNG. Combined above, we propose a Robust Self-training Algorithm based on Relative Node Graph (STRNG), which uses RNGE to identify mislabeled samples and edit them. The experimental results show that the proposed algorithm can improve the performance of the self-training algorithm.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.