Chandan Sarkar, Aditi De, Subir Maji, Julia Kłak, Subrata Kundu, Manindranath Bera
{"title":"蝶形杂金属三核 [CuII2MnII] 簇的设计、合成、磁性和氢进化反应。","authors":"Chandan Sarkar, Aditi De, Subir Maji, Julia Kłak, Subrata Kundu, Manindranath Bera","doi":"10.1021/acs.inorgchem.4c03723","DOIUrl":null,"url":null,"abstract":"<p><p>A novel heterometallic trinuclear cluster [Cu<sup>II</sup><sub>2</sub>Mn<sup>II</sup>(cpdp)(NO<sub>3</sub>)<sub>2</sub>(Cl)] (<b>1</b>) has been designed and synthesized by employing a molecular library approach that uses CuCl<sub>2</sub>·2H<sub>2</sub>O and Mn(NO<sub>3</sub>)<sub>2</sub>·4H<sub>2</sub>O as inorganic metal salts and H<sub>3</sub>cpdp as a multifunctional organic scaffold (H<sub>3</sub>cpdp = <i>N</i>,<i>N</i>'-bis[2-carboxybenzomethyl]-<i>N</i>,<i>N</i>'-bis[2-pyridylmethyl]-1,3-diaminopropan-2-ol). This heterometallic cluster has emerged as an unusual ferromagnetic material and promising electrocatalyst for hydrogen evolution reaction (HER) in the domain of inorganic and materials chemistry. Crystal structure analysis establishes the structural arrangement of <b>1</b>, revealing a butterfly-like topology with an unusual seven-coordinated Mn(II) center. Formation of this cluster is accomplished by a self-assembly process through functionalization of <b>1</b> with one μ<sub>2</sub>:η<sup>1</sup>:η<sup>1</sup>-nitrate and two μ<sub>2</sub>:η<sup>2</sup>:η<sup>1</sup>-benzoate groups via the Cu<sup>II</sup>(μ<sub>2</sub>-NO<sub>3</sub>)Cu<sup>II</sup>} and {Cu<sup>II</sup>(μ<sub>2</sub>-O<sub>2</sub>CC<sub>6</sub>H<sub>5</sub>)Mn<sup>II</sup>} linkages, respectively. Variable-temperature SQUID magnetometry revealed the coexistence of ferromagnetic and antiferromagnetic interactions in <b>1</b>. The observed magnetic behavior in <b>1</b> is unexpected because of a large Cu-O-Mn angle with a value of 132.05°, indicating that the correlation between coupling constants and the structural parameters is a multifactor problem. This cluster shows excellent electrocatalytic performance for the HER attaining a current density of 10 mA/cm<sup>2</sup> with a Tafel slope of 183 mV dec<sup>-1</sup> at a 310 mV overpotential value. Essentially, cluster <b>1</b> shows exceptional electrochemical stability at ambient temperature, accompanied by minimal degradation of the current density as examined by chronoamperometric studies. Density functional theory calculations establish the mechanistic insight into the HER process, indicating that the Cu<sup>II</sup>-OCO-Mn<sup>II</sup> site is the active site for formation of molecular hydrogen.</p>","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, Synthesis, Magnetic Properties, and Hydrogen Evolution Reaction of a Butterfly-like Heterometallic Trinuclear [Cu<sup>II</sup><sub>2</sub>Mn<sup>II</sup>] Cluster.\",\"authors\":\"Chandan Sarkar, Aditi De, Subir Maji, Julia Kłak, Subrata Kundu, Manindranath Bera\",\"doi\":\"10.1021/acs.inorgchem.4c03723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A novel heterometallic trinuclear cluster [Cu<sup>II</sup><sub>2</sub>Mn<sup>II</sup>(cpdp)(NO<sub>3</sub>)<sub>2</sub>(Cl)] (<b>1</b>) has been designed and synthesized by employing a molecular library approach that uses CuCl<sub>2</sub>·2H<sub>2</sub>O and Mn(NO<sub>3</sub>)<sub>2</sub>·4H<sub>2</sub>O as inorganic metal salts and H<sub>3</sub>cpdp as a multifunctional organic scaffold (H<sub>3</sub>cpdp = <i>N</i>,<i>N</i>'-bis[2-carboxybenzomethyl]-<i>N</i>,<i>N</i>'-bis[2-pyridylmethyl]-1,3-diaminopropan-2-ol). This heterometallic cluster has emerged as an unusual ferromagnetic material and promising electrocatalyst for hydrogen evolution reaction (HER) in the domain of inorganic and materials chemistry. Crystal structure analysis establishes the structural arrangement of <b>1</b>, revealing a butterfly-like topology with an unusual seven-coordinated Mn(II) center. Formation of this cluster is accomplished by a self-assembly process through functionalization of <b>1</b> with one μ<sub>2</sub>:η<sup>1</sup>:η<sup>1</sup>-nitrate and two μ<sub>2</sub>:η<sup>2</sup>:η<sup>1</sup>-benzoate groups via the Cu<sup>II</sup>(μ<sub>2</sub>-NO<sub>3</sub>)Cu<sup>II</sup>} and {Cu<sup>II</sup>(μ<sub>2</sub>-O<sub>2</sub>CC<sub>6</sub>H<sub>5</sub>)Mn<sup>II</sup>} linkages, respectively. Variable-temperature SQUID magnetometry revealed the coexistence of ferromagnetic and antiferromagnetic interactions in <b>1</b>. The observed magnetic behavior in <b>1</b> is unexpected because of a large Cu-O-Mn angle with a value of 132.05°, indicating that the correlation between coupling constants and the structural parameters is a multifactor problem. This cluster shows excellent electrocatalytic performance for the HER attaining a current density of 10 mA/cm<sup>2</sup> with a Tafel slope of 183 mV dec<sup>-1</sup> at a 310 mV overpotential value. Essentially, cluster <b>1</b> shows exceptional electrochemical stability at ambient temperature, accompanied by minimal degradation of the current density as examined by chronoamperometric studies. Density functional theory calculations establish the mechanistic insight into the HER process, indicating that the Cu<sup>II</sup>-OCO-Mn<sup>II</sup> site is the active site for formation of molecular hydrogen.</p>\",\"PeriodicalId\":40,\"journal\":{\"name\":\"Inorganic Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.inorgchem.4c03723\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.inorgchem.4c03723","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Design, Synthesis, Magnetic Properties, and Hydrogen Evolution Reaction of a Butterfly-like Heterometallic Trinuclear [CuII2MnII] Cluster.
A novel heterometallic trinuclear cluster [CuII2MnII(cpdp)(NO3)2(Cl)] (1) has been designed and synthesized by employing a molecular library approach that uses CuCl2·2H2O and Mn(NO3)2·4H2O as inorganic metal salts and H3cpdp as a multifunctional organic scaffold (H3cpdp = N,N'-bis[2-carboxybenzomethyl]-N,N'-bis[2-pyridylmethyl]-1,3-diaminopropan-2-ol). This heterometallic cluster has emerged as an unusual ferromagnetic material and promising electrocatalyst for hydrogen evolution reaction (HER) in the domain of inorganic and materials chemistry. Crystal structure analysis establishes the structural arrangement of 1, revealing a butterfly-like topology with an unusual seven-coordinated Mn(II) center. Formation of this cluster is accomplished by a self-assembly process through functionalization of 1 with one μ2:η1:η1-nitrate and two μ2:η2:η1-benzoate groups via the CuII(μ2-NO3)CuII} and {CuII(μ2-O2CC6H5)MnII} linkages, respectively. Variable-temperature SQUID magnetometry revealed the coexistence of ferromagnetic and antiferromagnetic interactions in 1. The observed magnetic behavior in 1 is unexpected because of a large Cu-O-Mn angle with a value of 132.05°, indicating that the correlation between coupling constants and the structural parameters is a multifactor problem. This cluster shows excellent electrocatalytic performance for the HER attaining a current density of 10 mA/cm2 with a Tafel slope of 183 mV dec-1 at a 310 mV overpotential value. Essentially, cluster 1 shows exceptional electrochemical stability at ambient temperature, accompanied by minimal degradation of the current density as examined by chronoamperometric studies. Density functional theory calculations establish the mechanistic insight into the HER process, indicating that the CuII-OCO-MnII site is the active site for formation of molecular hydrogen.
期刊介绍:
Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.