Lu Shi, Ruixin Liu, Yuan Tang, Jiale Wang, Zheng Wang, Guanggui Cheng, Meng Hu, Yang Yang, Jianning Ding
{"title":"用于高性能钠离子电容器的具有多级内置电场的中空多孔 Co0.85Se/ZnSe@MXene 阳极。","authors":"Lu Shi, Ruixin Liu, Yuan Tang, Jiale Wang, Zheng Wang, Guanggui Cheng, Meng Hu, Yang Yang, Jianning Ding","doi":"10.1021/acs.inorgchem.4c04021","DOIUrl":null,"url":null,"abstract":"<p><p>Sodium ion capacitors (SICs) are promising candidates in energy storage for their remarkable power and energy density. However, the inherent disparity in dynamic behavior between the sluggish battery-type anodes and the rapid capacitor-type cathodes constrained their performance. To address this, we fabricated a hollow porous Co<sub>0.85</sub>Se/ZnSe@MXene anode featuring multiheterostructure, utilizing facile etching and electrostatic self-assembly strategies. The hollow porous structure and multiple heterointerfaces stabilize the anode by mitigating the volume changes. Density functional theory (DFT) calculations further revealed that induced multilevel built-in electric fields facilitate the formation of rapid ion diffusion pathways and reduce the Na<sup>+</sup> adsorption energy, thereby boosting Na<sup>+</sup>/electron transport kinetics. The fabricated TA-Co<sub>0.85</sub>Se/ZnSe@MXene anode demonstrates outstanding long-term cycling stability of 406 mA h g<sup>-1</sup> after 1000 cycles at 1 A g<sup>-1</sup>, with an ultrahigh rate performance of 288 mA h g<sup>-1</sup> at 10 A g<sup>-1</sup>. When paired with the active carbon (AC) cathode, the SICs deliver extraordinary energy/power densities of 144 W h kg<sup>-1</sup> and 12000 W kg<sup>-1</sup>, maintaining over 80% capacity retention at 1 A g<sup>-1</sup> after 10000 cycles. This innovative strategy of engineering multiheterostructured anode with the induced multilevel built-in electric fields holds significant promise for advancing high-energy and high-power energy storage systems.</p>","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":" ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hollow Porous Co<sub>0.85</sub>Se/ZnSe@MXene Anode with Multilevel Built-in Electric Fields for High-Performance Sodium Ion Capacitors.\",\"authors\":\"Lu Shi, Ruixin Liu, Yuan Tang, Jiale Wang, Zheng Wang, Guanggui Cheng, Meng Hu, Yang Yang, Jianning Ding\",\"doi\":\"10.1021/acs.inorgchem.4c04021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sodium ion capacitors (SICs) are promising candidates in energy storage for their remarkable power and energy density. However, the inherent disparity in dynamic behavior between the sluggish battery-type anodes and the rapid capacitor-type cathodes constrained their performance. To address this, we fabricated a hollow porous Co<sub>0.85</sub>Se/ZnSe@MXene anode featuring multiheterostructure, utilizing facile etching and electrostatic self-assembly strategies. The hollow porous structure and multiple heterointerfaces stabilize the anode by mitigating the volume changes. Density functional theory (DFT) calculations further revealed that induced multilevel built-in electric fields facilitate the formation of rapid ion diffusion pathways and reduce the Na<sup>+</sup> adsorption energy, thereby boosting Na<sup>+</sup>/electron transport kinetics. The fabricated TA-Co<sub>0.85</sub>Se/ZnSe@MXene anode demonstrates outstanding long-term cycling stability of 406 mA h g<sup>-1</sup> after 1000 cycles at 1 A g<sup>-1</sup>, with an ultrahigh rate performance of 288 mA h g<sup>-1</sup> at 10 A g<sup>-1</sup>. When paired with the active carbon (AC) cathode, the SICs deliver extraordinary energy/power densities of 144 W h kg<sup>-1</sup> and 12000 W kg<sup>-1</sup>, maintaining over 80% capacity retention at 1 A g<sup>-1</sup> after 10000 cycles. This innovative strategy of engineering multiheterostructured anode with the induced multilevel built-in electric fields holds significant promise for advancing high-energy and high-power energy storage systems.</p>\",\"PeriodicalId\":40,\"journal\":{\"name\":\"Inorganic Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.inorgchem.4c04021\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.inorgchem.4c04021","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
摘要
钠离子电容器(SIC)具有出色的功率和能量密度,是储能领域的理想选择。然而,缓慢的电池型阳极和快速的电容器型阴极之间固有的动态行为差异限制了它们的性能。为解决这一问题,我们利用简易蚀刻和静电自组装策略,制备了一种具有多重异质结构的中空多孔 Co0.85Se/ZnSe@MXene 阳极。中空多孔结构和多重异质界面通过减缓体积变化来稳定阳极。密度泛函理论(DFT)计算进一步表明,诱导多级内置电场有助于形成快速离子扩散通道,降低 Na+ 吸附能,从而提高 Na+ / 电子传输动力学。所制备的 TA-Co0.85Se/ZnSe@MXene 阳极具有出色的长期循环稳定性,在 1 A g-1 的条件下循环 1000 次后可达到 406 mA h g-1,在 10 A g-1 的条件下具有 288 mA h g-1 的超高速率性能。与活性碳(AC)阴极搭配使用时,SIC 可提供 144 W h kg-1 和 12000 W kg-1 的超高能量/功率密度,在 1 A g-1 循环 10000 次后仍能保持 80% 以上的容量保持率。这种利用诱导多级内置电场的多异质结构阳极工程创新策略,为推动高能量和高功率储能系统的发展带来了巨大希望。
Hollow Porous Co0.85Se/ZnSe@MXene Anode with Multilevel Built-in Electric Fields for High-Performance Sodium Ion Capacitors.
Sodium ion capacitors (SICs) are promising candidates in energy storage for their remarkable power and energy density. However, the inherent disparity in dynamic behavior between the sluggish battery-type anodes and the rapid capacitor-type cathodes constrained their performance. To address this, we fabricated a hollow porous Co0.85Se/ZnSe@MXene anode featuring multiheterostructure, utilizing facile etching and electrostatic self-assembly strategies. The hollow porous structure and multiple heterointerfaces stabilize the anode by mitigating the volume changes. Density functional theory (DFT) calculations further revealed that induced multilevel built-in electric fields facilitate the formation of rapid ion diffusion pathways and reduce the Na+ adsorption energy, thereby boosting Na+/electron transport kinetics. The fabricated TA-Co0.85Se/ZnSe@MXene anode demonstrates outstanding long-term cycling stability of 406 mA h g-1 after 1000 cycles at 1 A g-1, with an ultrahigh rate performance of 288 mA h g-1 at 10 A g-1. When paired with the active carbon (AC) cathode, the SICs deliver extraordinary energy/power densities of 144 W h kg-1 and 12000 W kg-1, maintaining over 80% capacity retention at 1 A g-1 after 10000 cycles. This innovative strategy of engineering multiheterostructured anode with the induced multilevel built-in electric fields holds significant promise for advancing high-energy and high-power energy storage systems.
期刊介绍:
Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.