Lei Zhang, Chunhui Wang, Yuanyuan Li, Haiyang Wang, Kunhui Sun, Siyu Lu, Yahui Wang, Su Jing, Thorben Cordes
{"title":"用于靶向细胞成像和嗜热症的多功能荧光团的模块化设计和支架合成。","authors":"Lei Zhang, Chunhui Wang, Yuanyuan Li, Haiyang Wang, Kunhui Sun, Siyu Lu, Yahui Wang, Su Jing, Thorben Cordes","doi":"10.1002/anie.202415627","DOIUrl":null,"url":null,"abstract":"<p><p>Fluorophores are essential tools for optical imaging and biomedical research. Their synthetic modification to incorporate new functions, however, remains a challenging task. Conventional strategies rely on linear synthesis in which a parent framework is gradually extended. We here designed and synthesized a versatile library of multi-functional fluorophores via a scaffold-based Ugi four-component reaction (U-4CR). The adaptability of the scaffold is achieved through modification of starting materials. This allows to use a small range of starting materials for the creation of fluorogenic probes that can detect reactive-oxygen species and where the localization into subcellular organelles or membranes can be controlled. We present reaction yields ranging from 60 % to 90 % and discovered that some compounds can even function as imaging and therapeutic agents via Fenton chemistry inducing pyroptosis in living cancer cells. Our study underlines the potential of scaffold-based synthesis for versatile creation of functional fluorophores and their applications.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modular Design and Scaffold-Synthesis of Multi-Functional Fluorophores for Targeted Cellular Imaging and Pyroptosis.\",\"authors\":\"Lei Zhang, Chunhui Wang, Yuanyuan Li, Haiyang Wang, Kunhui Sun, Siyu Lu, Yahui Wang, Su Jing, Thorben Cordes\",\"doi\":\"10.1002/anie.202415627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fluorophores are essential tools for optical imaging and biomedical research. Their synthetic modification to incorporate new functions, however, remains a challenging task. Conventional strategies rely on linear synthesis in which a parent framework is gradually extended. We here designed and synthesized a versatile library of multi-functional fluorophores via a scaffold-based Ugi four-component reaction (U-4CR). The adaptability of the scaffold is achieved through modification of starting materials. This allows to use a small range of starting materials for the creation of fluorogenic probes that can detect reactive-oxygen species and where the localization into subcellular organelles or membranes can be controlled. We present reaction yields ranging from 60 % to 90 % and discovered that some compounds can even function as imaging and therapeutic agents via Fenton chemistry inducing pyroptosis in living cancer cells. Our study underlines the potential of scaffold-based synthesis for versatile creation of functional fluorophores and their applications.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202415627\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202415627","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Modular Design and Scaffold-Synthesis of Multi-Functional Fluorophores for Targeted Cellular Imaging and Pyroptosis.
Fluorophores are essential tools for optical imaging and biomedical research. Their synthetic modification to incorporate new functions, however, remains a challenging task. Conventional strategies rely on linear synthesis in which a parent framework is gradually extended. We here designed and synthesized a versatile library of multi-functional fluorophores via a scaffold-based Ugi four-component reaction (U-4CR). The adaptability of the scaffold is achieved through modification of starting materials. This allows to use a small range of starting materials for the creation of fluorogenic probes that can detect reactive-oxygen species and where the localization into subcellular organelles or membranes can be controlled. We present reaction yields ranging from 60 % to 90 % and discovered that some compounds can even function as imaging and therapeutic agents via Fenton chemistry inducing pyroptosis in living cancer cells. Our study underlines the potential of scaffold-based synthesis for versatile creation of functional fluorophores and their applications.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.