纳米团簇胶体电解质实现了高度稳定和可逆的锌阳极。

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-11-18 DOI:10.1021/acs.nanolett.4c03201
Jiahui Peng, Huanhuan Sun, Mengyao Wen, Yuming Chen, Zhixuan Luo, Yu Huyan, Yumeng Xue, Jian-Gan Wang
{"title":"纳米团簇胶体电解质实现了高度稳定和可逆的锌阳极。","authors":"Jiahui Peng, Huanhuan Sun, Mengyao Wen, Yuming Chen, Zhixuan Luo, Yu Huyan, Yumeng Xue, Jian-Gan Wang","doi":"10.1021/acs.nanolett.4c03201","DOIUrl":null,"url":null,"abstract":"<p><p>Aqueous zinc-ion batteries represent a favorable technology for stationary energy storage systems owing to their safety, reliability, and cost-effectiveness. However, Zn anodes suffer uncontrollable dendrite formation and harmful side reactions that lead to a short lifespan. Herein, we demonstrate a nanocluster colloidal electrolyte strategy for stabilizing the zinc anodes. A copper nanocluster (CuNC) is screened out to validate the efficient suppression of messy dendrites and side reactions. A CuNC could resurface a zincophilic and protective interlayer for interfacially steering uniform Zn stripping/plating and mitigating corrosion/hydrogen evolution reactions. Impressively, the colloidal electrolyte enables zinc anodes to show a high Coulombic efficiency of 99.8% over 2100 cycles and extended lifespans of 2200 and 1300 h under 0.5 and 5 mA cm<sup>-2</sup>, respectively. A full cell based on the modified electrolyte exhibits significantly improved cycling durability for more than 15 000 cycles. This work will aid in the design of nanocluser colloidal electrolytes with respect to stable zinc chemistry and beyond.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Nanocluster Colloidal Electrolyte Enables Highly Stable and Reversible Zinc Anodes.\",\"authors\":\"Jiahui Peng, Huanhuan Sun, Mengyao Wen, Yuming Chen, Zhixuan Luo, Yu Huyan, Yumeng Xue, Jian-Gan Wang\",\"doi\":\"10.1021/acs.nanolett.4c03201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aqueous zinc-ion batteries represent a favorable technology for stationary energy storage systems owing to their safety, reliability, and cost-effectiveness. However, Zn anodes suffer uncontrollable dendrite formation and harmful side reactions that lead to a short lifespan. Herein, we demonstrate a nanocluster colloidal electrolyte strategy for stabilizing the zinc anodes. A copper nanocluster (CuNC) is screened out to validate the efficient suppression of messy dendrites and side reactions. A CuNC could resurface a zincophilic and protective interlayer for interfacially steering uniform Zn stripping/plating and mitigating corrosion/hydrogen evolution reactions. Impressively, the colloidal electrolyte enables zinc anodes to show a high Coulombic efficiency of 99.8% over 2100 cycles and extended lifespans of 2200 and 1300 h under 0.5 and 5 mA cm<sup>-2</sup>, respectively. A full cell based on the modified electrolyte exhibits significantly improved cycling durability for more than 15 000 cycles. This work will aid in the design of nanocluser colloidal electrolytes with respect to stable zinc chemistry and beyond.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c03201\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03201","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Nanocluster Colloidal Electrolyte Enables Highly Stable and Reversible Zinc Anodes.

Aqueous zinc-ion batteries represent a favorable technology for stationary energy storage systems owing to their safety, reliability, and cost-effectiveness. However, Zn anodes suffer uncontrollable dendrite formation and harmful side reactions that lead to a short lifespan. Herein, we demonstrate a nanocluster colloidal electrolyte strategy for stabilizing the zinc anodes. A copper nanocluster (CuNC) is screened out to validate the efficient suppression of messy dendrites and side reactions. A CuNC could resurface a zincophilic and protective interlayer for interfacially steering uniform Zn stripping/plating and mitigating corrosion/hydrogen evolution reactions. Impressively, the colloidal electrolyte enables zinc anodes to show a high Coulombic efficiency of 99.8% over 2100 cycles and extended lifespans of 2200 and 1300 h under 0.5 and 5 mA cm-2, respectively. A full cell based on the modified electrolyte exhibits significantly improved cycling durability for more than 15 000 cycles. This work will aid in the design of nanocluser colloidal electrolytes with respect to stable zinc chemistry and beyond.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
A Nanocluster Colloidal Electrolyte Enables Highly Stable and Reversible Zinc Anodes. A Novel Approach to Harnessing Acoustic A-Lines to Detect Circulating Tumor Cells in Flowing Blood. Controlled Separation of Skyrmions and Antiskyrmions by Kitaev Interaction. Core-Sheath Heterogenous Interlocked Stretchable Conductive Fiber Induced by Adhesive MXene Modulated Interfacial Soldering. Engineering Two-Dimensional Magnetic Heterostructures: A Theoretical Perspective.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1