调节 MoS2 纳米孔的灵敏度:从DNA甲基化的标记检测到无标记检测。

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Small Methods Pub Date : 2024-11-18 DOI:10.1002/smtd.202401532
Chunxiao Zhao, Yibo Yang, Pinlong Zhao, Chongbin Shi, Tianhui Tan, Hongzhen Bai, Jiandong Feng
{"title":"调节 MoS2 纳米孔的灵敏度:从DNA甲基化的标记检测到无标记检测。","authors":"Chunxiao Zhao, Yibo Yang, Pinlong Zhao, Chongbin Shi, Tianhui Tan, Hongzhen Bai, Jiandong Feng","doi":"10.1002/smtd.202401532","DOIUrl":null,"url":null,"abstract":"<p><p>DNA methylation discrimination is often challenged by complicated pretreatment, insufficient sensitivity, and suboptimal accuracy. Here, single-molecule readout of DNA methylation is reported using single-layer MoS<sub>2</sub> nanopores. By tuning pore dimension, the sensitivity of MoS<sub>2</sub> nanopores is manipulated, empowering both labeling and labeling-free strategies for DNA methylation discrimination. With methyl-CpG-binding domain protein 1 (MBD1)-labeled methylated DNA translocation in customized nanopores, multiple methylated sites with distance as short as 70 bp in double strand DNA can be resolved. To further improve spatial resolution, small MoS<sub>2</sub> nanopores are engineered with single-nucleotide sensitivity, realizing labeling-free methylation detection with single-nucleotide resolution to recognize two nucleotides with only one methyl difference. This study demonstrates the availability of engineered MoS<sub>2</sub> nanopores in DNA methylation detection, underscoring their potential for epigenetic alteration research at the single-molecule level.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401532"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuning the Sensitivity of MoS<sub>2</sub> Nanopores: From Labeling to Labeling-Free Detection of DNA Methylation.\",\"authors\":\"Chunxiao Zhao, Yibo Yang, Pinlong Zhao, Chongbin Shi, Tianhui Tan, Hongzhen Bai, Jiandong Feng\",\"doi\":\"10.1002/smtd.202401532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>DNA methylation discrimination is often challenged by complicated pretreatment, insufficient sensitivity, and suboptimal accuracy. Here, single-molecule readout of DNA methylation is reported using single-layer MoS<sub>2</sub> nanopores. By tuning pore dimension, the sensitivity of MoS<sub>2</sub> nanopores is manipulated, empowering both labeling and labeling-free strategies for DNA methylation discrimination. With methyl-CpG-binding domain protein 1 (MBD1)-labeled methylated DNA translocation in customized nanopores, multiple methylated sites with distance as short as 70 bp in double strand DNA can be resolved. To further improve spatial resolution, small MoS<sub>2</sub> nanopores are engineered with single-nucleotide sensitivity, realizing labeling-free methylation detection with single-nucleotide resolution to recognize two nucleotides with only one methyl difference. This study demonstrates the availability of engineered MoS<sub>2</sub> nanopores in DNA methylation detection, underscoring their potential for epigenetic alteration research at the single-molecule level.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e2401532\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202401532\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401532","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

DNA 甲基化鉴别通常面临着预处理复杂、灵敏度不足和准确性不理想等挑战。本文报告了利用单层 MoS2 纳米孔对 DNA 甲基化进行单分子读出的情况。通过调节孔的尺寸,可以控制 MoS2 纳米孔的灵敏度,从而采用标记和无标记策略进行 DNA 甲基化鉴别。通过甲基-CpG结合域蛋白1(MBD1)标记的甲基化DNA在定制纳米孔中的转移,可以分辨出双链DNA中距离短至70 bp的多个甲基化位点。为了进一步提高空间分辨率,我们设计了具有单核苷酸灵敏度的小型 MoS2 纳米孔,实现了无标记甲基化检测,其单核苷酸分辨率可识别仅有一个甲基差异的两个核苷酸。这项研究展示了工程化 MoS2 纳米孔在 DNA 甲基化检测中的可用性,凸显了它们在单分子水平上进行表观遗传学改变研究的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tuning the Sensitivity of MoS2 Nanopores: From Labeling to Labeling-Free Detection of DNA Methylation.

DNA methylation discrimination is often challenged by complicated pretreatment, insufficient sensitivity, and suboptimal accuracy. Here, single-molecule readout of DNA methylation is reported using single-layer MoS2 nanopores. By tuning pore dimension, the sensitivity of MoS2 nanopores is manipulated, empowering both labeling and labeling-free strategies for DNA methylation discrimination. With methyl-CpG-binding domain protein 1 (MBD1)-labeled methylated DNA translocation in customized nanopores, multiple methylated sites with distance as short as 70 bp in double strand DNA can be resolved. To further improve spatial resolution, small MoS2 nanopores are engineered with single-nucleotide sensitivity, realizing labeling-free methylation detection with single-nucleotide resolution to recognize two nucleotides with only one methyl difference. This study demonstrates the availability of engineered MoS2 nanopores in DNA methylation detection, underscoring their potential for epigenetic alteration research at the single-molecule level.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
期刊最新文献
Circular Adhesion Substrates Inhibiting Cell Polarization and Proliferation via Graded Texture of Geometric Micropatterns. How the Kinetic Balance Between Charge-Transfer and Mass-Transfer Influences Zinc Anode Stability: An Ultramicroelectrode Study. Label-Free Prediction of Tumor Metastatic Potential via Ramanome. Tuning the Sensitivity of MoS2 Nanopores: From Labeling to Labeling-Free Detection of DNA Methylation. Interface Engineering of Network-Like 1D/2D (NHCNT/Ni─MOF) Hybrid Nanoarchitecture for Electrocatalytic Water Splitting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1