柚皮素通过 GSK-3β/β-Catenin 通路防止缺血性脑卒中后血脑屏障的破坏

IF 3.7 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Neurochemical Research Pub Date : 2024-11-18 DOI:10.1007/s11064-024-04259-w
Yanping Yang, Liang Li, Liang Yu, Ying Xia, Zongping Fang, Shiquan Wang
{"title":"柚皮素通过 GSK-3β/β-Catenin 通路防止缺血性脑卒中后血脑屏障的破坏","authors":"Yanping Yang,&nbsp;Liang Li,&nbsp;Liang Yu,&nbsp;Ying Xia,&nbsp;Zongping Fang,&nbsp;Shiquan Wang","doi":"10.1007/s11064-024-04259-w","DOIUrl":null,"url":null,"abstract":"<div><p>Protection against blood-brain barrier (BBB) dysfunction is key to reduce the cerebral ischemia injury as its breakdown causes edema formation and extravasation of blood components and immune cells. The maintenance of BBB integrity requires the GSK-3β/β-catenin pathway activity. Naringenin (NAR), an effective monomer from Chinese herbal medicine, had potent protective effect on brain inflammatory and oxidative injury. However, whether NAR could protect the integrity of BBB during cerebral ischemia injury and the involvement of GSK-3β/β-catenin pathway in the beneficial effect of NAR was unknown. Therefore, mouse middle cerebral artery occlusion/reperfusion (IR) model was employed to answer these questions. NAR was intraperitoneally administrated once daily for 6 days immediately after IR with the dose of 10 mg/kg. BBB damage was evaluated with Evans blue. Protein levels of GSK-3β and β-catenin in vascular endothelial cells at penumbra were assessed with western blotting and immunofluorescence. The experimental data suggested that NAR improved neurological deficits, decreased the percentage of infarct volumes and neuronal apoptosis at 7d after IR. NAR improved BBB damage as evidenced by a lower permeability of Evans blue dye and upregulation of tight junction proteins such as zonula occludens-1(ZO-1), Occludin and Claudin-5. Importantly, GSK-3β/β-catenin pathway activity was related to the improvement of BBB integrity rendered by NAR. Our findings demonstrated that NAR might become a potential therapeutic drug for IR.</p></div>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":"50 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Naringenin Protected Against Blood Brain Barrier Breakdown after Ischemic Stroke through GSK-3β/ β-Catenin Pathway\",\"authors\":\"Yanping Yang,&nbsp;Liang Li,&nbsp;Liang Yu,&nbsp;Ying Xia,&nbsp;Zongping Fang,&nbsp;Shiquan Wang\",\"doi\":\"10.1007/s11064-024-04259-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Protection against blood-brain barrier (BBB) dysfunction is key to reduce the cerebral ischemia injury as its breakdown causes edema formation and extravasation of blood components and immune cells. The maintenance of BBB integrity requires the GSK-3β/β-catenin pathway activity. Naringenin (NAR), an effective monomer from Chinese herbal medicine, had potent protective effect on brain inflammatory and oxidative injury. However, whether NAR could protect the integrity of BBB during cerebral ischemia injury and the involvement of GSK-3β/β-catenin pathway in the beneficial effect of NAR was unknown. Therefore, mouse middle cerebral artery occlusion/reperfusion (IR) model was employed to answer these questions. NAR was intraperitoneally administrated once daily for 6 days immediately after IR with the dose of 10 mg/kg. BBB damage was evaluated with Evans blue. Protein levels of GSK-3β and β-catenin in vascular endothelial cells at penumbra were assessed with western blotting and immunofluorescence. The experimental data suggested that NAR improved neurological deficits, decreased the percentage of infarct volumes and neuronal apoptosis at 7d after IR. NAR improved BBB damage as evidenced by a lower permeability of Evans blue dye and upregulation of tight junction proteins such as zonula occludens-1(ZO-1), Occludin and Claudin-5. Importantly, GSK-3β/β-catenin pathway activity was related to the improvement of BBB integrity rendered by NAR. Our findings demonstrated that NAR might become a potential therapeutic drug for IR.</p></div>\",\"PeriodicalId\":719,\"journal\":{\"name\":\"Neurochemical Research\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurochemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11064-024-04259-w\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemical Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s11064-024-04259-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

血脑屏障(BBB)功能障碍会导致水肿形成以及血液成分和免疫细胞外渗,因此防止血脑屏障功能障碍是减少脑缺血损伤的关键。维持 BBB 的完整性需要 GSK-3β/β-catenin 通路的活性。柚皮苷(NAR)是一种有效的中药单体,对脑部炎症和氧化损伤有很强的保护作用。然而,NAR能否在脑缺血损伤时保护BBB的完整性,以及GSK-3β/β-catenin通路参与NAR的有益作用尚不清楚。因此,我们采用了小鼠大脑中动脉闭塞/再灌注(IR)模型来回答这些问题。在小鼠大脑中动脉闭塞/再灌注(IR)模型中,每天腹腔注射一次NAR,剂量为10毫克/千克,连续6天。用伊文思蓝评估BBB损伤。用 Western 印迹和免疫荧光评估半影血管内皮细胞中 GSK-3β 和 β-catenin 蛋白水平。实验数据表明,在红外损伤后7d,NAR改善了神经功能缺损,降低了梗死体积百分比和神经元凋亡。NAR改善了BBB损伤,表现为埃文斯蓝染料的通透性降低,紧密连接蛋白(如Zonula occludens-1(ZO-1)、Occludin和Claudin-5)上调。重要的是,GSK-3β/β-catenin通路的活性与NAR对BBB完整性的改善有关。我们的研究结果表明,NAR可能成为一种潜在的IR治疗药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Naringenin Protected Against Blood Brain Barrier Breakdown after Ischemic Stroke through GSK-3β/ β-Catenin Pathway

Protection against blood-brain barrier (BBB) dysfunction is key to reduce the cerebral ischemia injury as its breakdown causes edema formation and extravasation of blood components and immune cells. The maintenance of BBB integrity requires the GSK-3β/β-catenin pathway activity. Naringenin (NAR), an effective monomer from Chinese herbal medicine, had potent protective effect on brain inflammatory and oxidative injury. However, whether NAR could protect the integrity of BBB during cerebral ischemia injury and the involvement of GSK-3β/β-catenin pathway in the beneficial effect of NAR was unknown. Therefore, mouse middle cerebral artery occlusion/reperfusion (IR) model was employed to answer these questions. NAR was intraperitoneally administrated once daily for 6 days immediately after IR with the dose of 10 mg/kg. BBB damage was evaluated with Evans blue. Protein levels of GSK-3β and β-catenin in vascular endothelial cells at penumbra were assessed with western blotting and immunofluorescence. The experimental data suggested that NAR improved neurological deficits, decreased the percentage of infarct volumes and neuronal apoptosis at 7d after IR. NAR improved BBB damage as evidenced by a lower permeability of Evans blue dye and upregulation of tight junction proteins such as zonula occludens-1(ZO-1), Occludin and Claudin-5. Importantly, GSK-3β/β-catenin pathway activity was related to the improvement of BBB integrity rendered by NAR. Our findings demonstrated that NAR might become a potential therapeutic drug for IR.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurochemical Research
Neurochemical Research 医学-神经科学
CiteScore
7.70
自引率
2.30%
发文量
320
审稿时长
6 months
期刊介绍: Neurochemical Research is devoted to the rapid publication of studies that use neurochemical methodology in research on nervous system structure and function. The journal publishes original reports of experimental and clinical research results, perceptive reviews of significant problem areas in the neurosciences, brief comments of a methodological or interpretive nature, and research summaries conducted by leading scientists whose works are not readily available in English.
期刊最新文献
Maresin-1 Ameliorates Sepsis-Induced Microglial Activation Through Modulation of the P38 MAPK Pathway GABA Receptors and Kv7 Channels as Targets for GABAergic Regulation of Acetylcholine Release in Frog Neuromuscular Junction Differential Effects of Itaconate and its Esters on the Glutathione and Glucose Metabolism of Cultured Primary Rat Astrocytes Alterations in Circular RNAs circOprm1 and circSerpini in the Striatum are Associated with Changes in Spatial Working Memory Performance after Morphine Dependence and Withdrawal in Rats Exploring α-synuclein Interaction Partners and their Potential Clinical Implications for Parkinson’s Disease
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1