Yin-Hai Li , Fei Xu , Wei-Long Zhao , Xiao-Fan Tang , Feng Liu , Chun-Miao Bo
{"title":"设计用于荧光筛选和液相色谱串联质谱检测毒素的掺硼碳点功能化 COF。","authors":"Yin-Hai Li , Fei Xu , Wei-Long Zhao , Xiao-Fan Tang , Feng Liu , Chun-Miao Bo","doi":"10.1016/j.chroma.2024.465515","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, mushroom poisoning has been one of the most important factors of food poisoning in China, timely identification of the toxins contained in mushrooms is crucial for the treatment of patients. In this study, boric acid carbon dots (BA-CDs) can undergo specific boron affinity reactions with amatoxins toxins containing o-dihydroxyl groups by means of boric acid groups. Functional covalent organic framework (COF) and BA-CDs were combined to design a adsorbent with boric acid group (COF@VBC@BA-CDs) was designed to meet the requirements of both fluorescent and pretreated materials for amatoxins. The mushrooms and urine samples were rapid screening using fluorescence detection, and then, for positive samples, the target analytes on the COF@VBC@BA-CDs are collected and eluted for next liquid chromatography tandem mass spectrometry (LC-MS/MS) detection. According to the fluorescence characteristics of COF@VBC@BA-CDs, the fluorescence quenching intensity was linearly correlated with the concentration (2–200 μg/L) and the detection limit was 1.2 μg/L. Meanwhile, the detection limit of LC-MS/MS was 0.5 μg/kg for musroom and 0.2 μg/L for urine, as well as the recovery rate was 72.7–110.1%. This noval method meets the methodological requirements and can be used for actual sample analysis.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":"1739 ","pages":"Article 465515"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing boron-doped carbon dot-functionalized COFs for fluorescence screening and liquid chromatography tandem mass spectrometry detection of toxins\",\"authors\":\"Yin-Hai Li , Fei Xu , Wei-Long Zhao , Xiao-Fan Tang , Feng Liu , Chun-Miao Bo\",\"doi\":\"10.1016/j.chroma.2024.465515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In recent years, mushroom poisoning has been one of the most important factors of food poisoning in China, timely identification of the toxins contained in mushrooms is crucial for the treatment of patients. In this study, boric acid carbon dots (BA-CDs) can undergo specific boron affinity reactions with amatoxins toxins containing o-dihydroxyl groups by means of boric acid groups. Functional covalent organic framework (COF) and BA-CDs were combined to design a adsorbent with boric acid group (COF@VBC@BA-CDs) was designed to meet the requirements of both fluorescent and pretreated materials for amatoxins. The mushrooms and urine samples were rapid screening using fluorescence detection, and then, for positive samples, the target analytes on the COF@VBC@BA-CDs are collected and eluted for next liquid chromatography tandem mass spectrometry (LC-MS/MS) detection. According to the fluorescence characteristics of COF@VBC@BA-CDs, the fluorescence quenching intensity was linearly correlated with the concentration (2–200 μg/L) and the detection limit was 1.2 μg/L. Meanwhile, the detection limit of LC-MS/MS was 0.5 μg/kg for musroom and 0.2 μg/L for urine, as well as the recovery rate was 72.7–110.1%. This noval method meets the methodological requirements and can be used for actual sample analysis.</div></div>\",\"PeriodicalId\":347,\"journal\":{\"name\":\"Journal of Chromatography A\",\"volume\":\"1739 \",\"pages\":\"Article 465515\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chromatography A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021967324008896\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography A","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021967324008896","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Designing boron-doped carbon dot-functionalized COFs for fluorescence screening and liquid chromatography tandem mass spectrometry detection of toxins
In recent years, mushroom poisoning has been one of the most important factors of food poisoning in China, timely identification of the toxins contained in mushrooms is crucial for the treatment of patients. In this study, boric acid carbon dots (BA-CDs) can undergo specific boron affinity reactions with amatoxins toxins containing o-dihydroxyl groups by means of boric acid groups. Functional covalent organic framework (COF) and BA-CDs were combined to design a adsorbent with boric acid group (COF@VBC@BA-CDs) was designed to meet the requirements of both fluorescent and pretreated materials for amatoxins. The mushrooms and urine samples were rapid screening using fluorescence detection, and then, for positive samples, the target analytes on the COF@VBC@BA-CDs are collected and eluted for next liquid chromatography tandem mass spectrometry (LC-MS/MS) detection. According to the fluorescence characteristics of COF@VBC@BA-CDs, the fluorescence quenching intensity was linearly correlated with the concentration (2–200 μg/L) and the detection limit was 1.2 μg/L. Meanwhile, the detection limit of LC-MS/MS was 0.5 μg/kg for musroom and 0.2 μg/L for urine, as well as the recovery rate was 72.7–110.1%. This noval method meets the methodological requirements and can be used for actual sample analysis.
期刊介绍:
The Journal of Chromatography A provides a forum for the publication of original research and critical reviews on all aspects of fundamental and applied separation science. The scope of the journal includes chromatography and related techniques, electromigration techniques (e.g. electrophoresis, electrochromatography), hyphenated and other multi-dimensional techniques, sample preparation, and detection methods such as mass spectrometry. Contributions consist mainly of research papers dealing with the theory of separation methods, instrumental developments and analytical and preparative applications of general interest.