牛粪和锯末在通过转鼓堆肥工艺对猪粪便进行生物转化过程中的作用。

IF 2.9 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES Environmental Monitoring and Assessment Pub Date : 2024-11-18 DOI:10.1007/s10661-024-13395-3
C Lalthlansanga, Suryateja Pottipati, Bijayananda Mohanty, Ajay S. Kalamdhad
{"title":"牛粪和锯末在通过转鼓堆肥工艺对猪粪便进行生物转化过程中的作用。","authors":"C Lalthlansanga,&nbsp;Suryateja Pottipati,&nbsp;Bijayananda Mohanty,&nbsp;Ajay S. Kalamdhad","doi":"10.1007/s10661-024-13395-3","DOIUrl":null,"url":null,"abstract":"<div><p>The demand for strategic and environment-friendly swine waste (SW) management is critical in the northeastern states of India, which account for 46.7% of the country’s total swine population. This paper examines nutrient-rich compost production from SW with minimal negative environmental fallout, using cow dung microbiological inoculum and sawdust bulking agent for expeditious rotary drum composting. Aerobic biodegradation conducted in a rotary drum composter (RDC), raised the feedstock temperature to &gt; 40 °C in just 24 h, which stimulated thermophilic decomposition. The thermophilic phase remained for 16 days in the cow dung-amended 10:1:1 (swine waste:cow dung:sawdust) trial (RDC1) versus 7 days for the sawdust-amended 10:1 (swine waste:sawdust) trial (RDC2). After 20 days, the RDC1 product exhibited superior nutritional characteristics, with a total nitrogen content of 2.52%, a significantly reduced coliform population, and an overall weight loss of 25%. These findings highlight that incorporating cow dung (10% w/w) into SW and bulking agents through RDC produces high-quality compost in just 20 days. Thus, the livestock industry benefits significantly from this laboratory-scale method of improved waste management by producing valuable bioproducts via RDC.</p></div>","PeriodicalId":544,"journal":{"name":"Environmental Monitoring and Assessment","volume":"196 12","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of cow dung and sawdust during the bioconversion of swine waste through the rotary drum composting process\",\"authors\":\"C Lalthlansanga,&nbsp;Suryateja Pottipati,&nbsp;Bijayananda Mohanty,&nbsp;Ajay S. Kalamdhad\",\"doi\":\"10.1007/s10661-024-13395-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The demand for strategic and environment-friendly swine waste (SW) management is critical in the northeastern states of India, which account for 46.7% of the country’s total swine population. This paper examines nutrient-rich compost production from SW with minimal negative environmental fallout, using cow dung microbiological inoculum and sawdust bulking agent for expeditious rotary drum composting. Aerobic biodegradation conducted in a rotary drum composter (RDC), raised the feedstock temperature to &gt; 40 °C in just 24 h, which stimulated thermophilic decomposition. The thermophilic phase remained for 16 days in the cow dung-amended 10:1:1 (swine waste:cow dung:sawdust) trial (RDC1) versus 7 days for the sawdust-amended 10:1 (swine waste:sawdust) trial (RDC2). After 20 days, the RDC1 product exhibited superior nutritional characteristics, with a total nitrogen content of 2.52%, a significantly reduced coliform population, and an overall weight loss of 25%. These findings highlight that incorporating cow dung (10% w/w) into SW and bulking agents through RDC produces high-quality compost in just 20 days. Thus, the livestock industry benefits significantly from this laboratory-scale method of improved waste management by producing valuable bioproducts via RDC.</p></div>\",\"PeriodicalId\":544,\"journal\":{\"name\":\"Environmental Monitoring and Assessment\",\"volume\":\"196 12\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Monitoring and Assessment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10661-024-13395-3\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Monitoring and Assessment","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10661-024-13395-3","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

印度东北部各邦的猪存栏量占全国总存栏量的 46.7%,因此对猪废弃物(SW)进行战略性环保管理的需求十分迫切。本文研究了利用牛粪微生物接种体和锯末膨松剂从猪废弃物中生产营养丰富的堆肥,同时将对环境的负面影响降至最低,以加快转鼓堆肥。在转鼓堆肥机(RDC)中进行有氧生物降解,在短短 24 小时内将原料温度提高到 > 40 °C,从而刺激嗜热分解。牛粪改良 10:1:1(猪废料:牛粪:锯末)试验(RDC1)的嗜热阶段持续 16 天,而锯末改良 10:1(猪废料:锯末)试验(RDC2)的嗜热阶段持续 7 天。20 天后,RDC1 产品表现出更优越的营养特性,总氮含量为 2.52%,大肠菌群数量显著减少,总体重量减少 25%。这些研究结果突出表明,通过 RDC 将牛粪(10% w/w)加入 SW 和膨松剂中,只需 20 天就能产生优质堆肥。因此,通过 RDC 生产有价值的生物产品,畜牧业从这种实验室规模的废物管理改进方法中获益匪浅。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Role of cow dung and sawdust during the bioconversion of swine waste through the rotary drum composting process

The demand for strategic and environment-friendly swine waste (SW) management is critical in the northeastern states of India, which account for 46.7% of the country’s total swine population. This paper examines nutrient-rich compost production from SW with minimal negative environmental fallout, using cow dung microbiological inoculum and sawdust bulking agent for expeditious rotary drum composting. Aerobic biodegradation conducted in a rotary drum composter (RDC), raised the feedstock temperature to > 40 °C in just 24 h, which stimulated thermophilic decomposition. The thermophilic phase remained for 16 days in the cow dung-amended 10:1:1 (swine waste:cow dung:sawdust) trial (RDC1) versus 7 days for the sawdust-amended 10:1 (swine waste:sawdust) trial (RDC2). After 20 days, the RDC1 product exhibited superior nutritional characteristics, with a total nitrogen content of 2.52%, a significantly reduced coliform population, and an overall weight loss of 25%. These findings highlight that incorporating cow dung (10% w/w) into SW and bulking agents through RDC produces high-quality compost in just 20 days. Thus, the livestock industry benefits significantly from this laboratory-scale method of improved waste management by producing valuable bioproducts via RDC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Monitoring and Assessment
Environmental Monitoring and Assessment 环境科学-环境科学
CiteScore
4.70
自引率
6.70%
发文量
1000
审稿时长
7.3 months
期刊介绍: Environmental Monitoring and Assessment emphasizes technical developments and data arising from environmental monitoring and assessment, the use of scientific principles in the design of monitoring systems at the local, regional and global scales, and the use of monitoring data in assessing the consequences of natural resource management actions and pollution risks to man and the environment.
期刊最新文献
Heavy metal(loid)s pollution in soils of a typical agricultural and rural area: Source apportionment and derived risk quantification Spatial distribution patterns and hotspots of extreme agro-climatic resources in the Horro Guduru Wollega Zone, Northwestern Ethiopia Health risks and pathological effects of heavy metals in Oreochromis mossambicus from Usuma River, Nigeria Comprehensive assessment of fish diversity and water health in river Indus, Khyber Pakhtunkhwa, Pakistan Enhanced removal of methyl orange and malachite green using mesoporous TO@CTAB nanocomposite: Synthesis, characterization, optimization and real wastewater treatment efficiency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1