Amanda Andersson Pereira Stark, Carine Dahl Corcini, Marc Yeste Oliveras, Adalto Bianchini, Izani Bonel Acosta, Patrícia Gomes Costa, Gabriel da Silva Zani, Antonio Sérgio Varela Junior, Raqueli Teresinha França
{"title":"Trachemys dorbigni 作为一种金属(loid)生物指标:一项在农村和城市地区进行的研究。","authors":"Amanda Andersson Pereira Stark, Carine Dahl Corcini, Marc Yeste Oliveras, Adalto Bianchini, Izani Bonel Acosta, Patrícia Gomes Costa, Gabriel da Silva Zani, Antonio Sérgio Varela Junior, Raqueli Teresinha França","doi":"10.1007/s10661-024-13384-6","DOIUrl":null,"url":null,"abstract":"<div><p>Metals and metalloids are persistent environmental pollutants with the potential for bioaccumulation, posing significant health risks, including genotoxicity. These contaminants are prevalent in industrial and agricultural runoff. This study utilizes <i>Trachemys dorbigni</i>, an aquatic reptile, as a bioindicator to assess environmental contamination by metals and metalloids in both rural and urban settings in Pelotas, Rio Grande do Sul, Brazil. We captured specimens using pit-type traps with barriers (fyke nets), dividing them into two groups: 15 from a rural area and 15 from an urban area. Each animal underwent physical evaluations, and biometric data (weight, total carapace length and width) were recorded to calculate body condition indices. Biological samples were collected via manual restraint, with blood samples drawn from the supraoccipital venous sinus and linear carapace fragments obtained through manual scraping. Water samples from each location were also analyzed. Using atomic absorption spectrophotometry, concentrations of Al, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb and Zn were measured in the water, carapace fragments, and blood samples. Cellular damage was assessed through flow cytometry and microscopy, examining erythrocyte disruption, reactive oxygen species, membrane fluidity, DNA fragmentation and micronucleus formation. Urban area samples showed concentrations of As, Cd, Cu, Fe, Hg and Ni exceeding national standards set by the Conselho Nacional do Meio Ambiente (CONAMA), with rural areas also showing elevated levels of As, Cd, Hg and Ni. Biometric analysis revealed that rural reptiles had significantly higher weight and carapace dimensions, whereas urban tortoises displayed a higher body condition index and significantly elevated blood levels of Al, Cr, Ni, Pb and Zn. The urban tortoises also exhibited higher concentrations of all tested metal(loid) in carapace samples (<i>p</i> < 0.05) and more pronounced cellular damage (<i>p</i> < 0.05), highlighting severe bioaccumulation and associated deleterious effects. Elevated reactive oxygen species levels were noted in rural specimens. This study underscores the impact of water degradation and metal(loid) pollution in urban environments on <i>T. dorbigni</i>, suggesting that carapace tissue analysis can serve as a chronic exposure indicator to these harmful contaminants.</p></div>","PeriodicalId":544,"journal":{"name":"Environmental Monitoring and Assessment","volume":"196 12","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trachemys dorbigni as a metal(loid) bioindicator: a study in rural and urban areas\",\"authors\":\"Amanda Andersson Pereira Stark, Carine Dahl Corcini, Marc Yeste Oliveras, Adalto Bianchini, Izani Bonel Acosta, Patrícia Gomes Costa, Gabriel da Silva Zani, Antonio Sérgio Varela Junior, Raqueli Teresinha França\",\"doi\":\"10.1007/s10661-024-13384-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Metals and metalloids are persistent environmental pollutants with the potential for bioaccumulation, posing significant health risks, including genotoxicity. These contaminants are prevalent in industrial and agricultural runoff. This study utilizes <i>Trachemys dorbigni</i>, an aquatic reptile, as a bioindicator to assess environmental contamination by metals and metalloids in both rural and urban settings in Pelotas, Rio Grande do Sul, Brazil. We captured specimens using pit-type traps with barriers (fyke nets), dividing them into two groups: 15 from a rural area and 15 from an urban area. Each animal underwent physical evaluations, and biometric data (weight, total carapace length and width) were recorded to calculate body condition indices. Biological samples were collected via manual restraint, with blood samples drawn from the supraoccipital venous sinus and linear carapace fragments obtained through manual scraping. Water samples from each location were also analyzed. Using atomic absorption spectrophotometry, concentrations of Al, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb and Zn were measured in the water, carapace fragments, and blood samples. Cellular damage was assessed through flow cytometry and microscopy, examining erythrocyte disruption, reactive oxygen species, membrane fluidity, DNA fragmentation and micronucleus formation. Urban area samples showed concentrations of As, Cd, Cu, Fe, Hg and Ni exceeding national standards set by the Conselho Nacional do Meio Ambiente (CONAMA), with rural areas also showing elevated levels of As, Cd, Hg and Ni. Biometric analysis revealed that rural reptiles had significantly higher weight and carapace dimensions, whereas urban tortoises displayed a higher body condition index and significantly elevated blood levels of Al, Cr, Ni, Pb and Zn. The urban tortoises also exhibited higher concentrations of all tested metal(loid) in carapace samples (<i>p</i> < 0.05) and more pronounced cellular damage (<i>p</i> < 0.05), highlighting severe bioaccumulation and associated deleterious effects. Elevated reactive oxygen species levels were noted in rural specimens. This study underscores the impact of water degradation and metal(loid) pollution in urban environments on <i>T. dorbigni</i>, suggesting that carapace tissue analysis can serve as a chronic exposure indicator to these harmful contaminants.</p></div>\",\"PeriodicalId\":544,\"journal\":{\"name\":\"Environmental Monitoring and Assessment\",\"volume\":\"196 12\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Monitoring and Assessment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10661-024-13384-6\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Monitoring and Assessment","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10661-024-13384-6","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Trachemys dorbigni as a metal(loid) bioindicator: a study in rural and urban areas
Metals and metalloids are persistent environmental pollutants with the potential for bioaccumulation, posing significant health risks, including genotoxicity. These contaminants are prevalent in industrial and agricultural runoff. This study utilizes Trachemys dorbigni, an aquatic reptile, as a bioindicator to assess environmental contamination by metals and metalloids in both rural and urban settings in Pelotas, Rio Grande do Sul, Brazil. We captured specimens using pit-type traps with barriers (fyke nets), dividing them into two groups: 15 from a rural area and 15 from an urban area. Each animal underwent physical evaluations, and biometric data (weight, total carapace length and width) were recorded to calculate body condition indices. Biological samples were collected via manual restraint, with blood samples drawn from the supraoccipital venous sinus and linear carapace fragments obtained through manual scraping. Water samples from each location were also analyzed. Using atomic absorption spectrophotometry, concentrations of Al, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb and Zn were measured in the water, carapace fragments, and blood samples. Cellular damage was assessed through flow cytometry and microscopy, examining erythrocyte disruption, reactive oxygen species, membrane fluidity, DNA fragmentation and micronucleus formation. Urban area samples showed concentrations of As, Cd, Cu, Fe, Hg and Ni exceeding national standards set by the Conselho Nacional do Meio Ambiente (CONAMA), with rural areas also showing elevated levels of As, Cd, Hg and Ni. Biometric analysis revealed that rural reptiles had significantly higher weight and carapace dimensions, whereas urban tortoises displayed a higher body condition index and significantly elevated blood levels of Al, Cr, Ni, Pb and Zn. The urban tortoises also exhibited higher concentrations of all tested metal(loid) in carapace samples (p < 0.05) and more pronounced cellular damage (p < 0.05), highlighting severe bioaccumulation and associated deleterious effects. Elevated reactive oxygen species levels were noted in rural specimens. This study underscores the impact of water degradation and metal(loid) pollution in urban environments on T. dorbigni, suggesting that carapace tissue analysis can serve as a chronic exposure indicator to these harmful contaminants.
期刊介绍:
Environmental Monitoring and Assessment emphasizes technical developments and data arising from environmental monitoring and assessment, the use of scientific principles in the design of monitoring systems at the local, regional and global scales, and the use of monitoring data in assessing the consequences of natural resource management actions and pollution risks to man and the environment.