利用文本挖掘技术了解治疗药物监测研究的历史概况。

IF 1.7 4区 医学 Q3 PHARMACOLOGY & PHARMACY Biological & pharmaceutical bulletin Pub Date : 2024-01-01 DOI:10.1248/bpb.b24-00319
Tetsuo Matsuzaki, Hiroyuki Mizoguchi, Kiyofumi Yamada
{"title":"利用文本挖掘技术了解治疗药物监测研究的历史概况。","authors":"Tetsuo Matsuzaki, Hiroyuki Mizoguchi, Kiyofumi Yamada","doi":"10.1248/bpb.b24-00319","DOIUrl":null,"url":null,"abstract":"<p><p>Therapeutic drug monitoring (TDM) is a routine clinical practice used to individualize drug dosing to maintain drug efficacy and minimize the consequences of overexposure. TDM is applied to many drug classes, including immunosuppressants, antineoplastic agents, and antibiotics. Considerable effort has been made to establish routine TDM practices for each drug. However, because TDM has been developed within the context of specific drugs, there is insufficient understanding of historical trends within the field of TDM research as a whole. In this study, we employed text-mining approaches to explore trends in the TDM research field. We first performed a PubMed search to determine which drugs and drug classes have been extensively studied in the context of TDM. This investigation revealed that the most commonly studied drugs are tacrolimus, followed by cyclosporine and vancomycin. With regard to drug classes, most studies focused on immunosuppressants, antibiotics, and antineoplastic agents. We also subjected PubMed records of TDM-related studies to a series of text-mining pipelines. Our analyses revealed how TDM research has evolved over the years, thereby serving as a cornerstone for forecasting future research trends.</p>","PeriodicalId":8955,"journal":{"name":"Biological & pharmaceutical bulletin","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Use of Text Mining to Obtain a Historical Overview of Research on Therapeutic Drug Monitoring.\",\"authors\":\"Tetsuo Matsuzaki, Hiroyuki Mizoguchi, Kiyofumi Yamada\",\"doi\":\"10.1248/bpb.b24-00319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Therapeutic drug monitoring (TDM) is a routine clinical practice used to individualize drug dosing to maintain drug efficacy and minimize the consequences of overexposure. TDM is applied to many drug classes, including immunosuppressants, antineoplastic agents, and antibiotics. Considerable effort has been made to establish routine TDM practices for each drug. However, because TDM has been developed within the context of specific drugs, there is insufficient understanding of historical trends within the field of TDM research as a whole. In this study, we employed text-mining approaches to explore trends in the TDM research field. We first performed a PubMed search to determine which drugs and drug classes have been extensively studied in the context of TDM. This investigation revealed that the most commonly studied drugs are tacrolimus, followed by cyclosporine and vancomycin. With regard to drug classes, most studies focused on immunosuppressants, antibiotics, and antineoplastic agents. We also subjected PubMed records of TDM-related studies to a series of text-mining pipelines. Our analyses revealed how TDM research has evolved over the years, thereby serving as a cornerstone for forecasting future research trends.</p>\",\"PeriodicalId\":8955,\"journal\":{\"name\":\"Biological & pharmaceutical bulletin\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological & pharmaceutical bulletin\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1248/bpb.b24-00319\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological & pharmaceutical bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1248/bpb.b24-00319","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Use of Text Mining to Obtain a Historical Overview of Research on Therapeutic Drug Monitoring.

Therapeutic drug monitoring (TDM) is a routine clinical practice used to individualize drug dosing to maintain drug efficacy and minimize the consequences of overexposure. TDM is applied to many drug classes, including immunosuppressants, antineoplastic agents, and antibiotics. Considerable effort has been made to establish routine TDM practices for each drug. However, because TDM has been developed within the context of specific drugs, there is insufficient understanding of historical trends within the field of TDM research as a whole. In this study, we employed text-mining approaches to explore trends in the TDM research field. We first performed a PubMed search to determine which drugs and drug classes have been extensively studied in the context of TDM. This investigation revealed that the most commonly studied drugs are tacrolimus, followed by cyclosporine and vancomycin. With regard to drug classes, most studies focused on immunosuppressants, antibiotics, and antineoplastic agents. We also subjected PubMed records of TDM-related studies to a series of text-mining pipelines. Our analyses revealed how TDM research has evolved over the years, thereby serving as a cornerstone for forecasting future research trends.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
5.00%
发文量
247
审稿时长
2 months
期刊介绍: Biological and Pharmaceutical Bulletin (Biol. Pharm. Bull.) began publication in 1978 as the Journal of Pharmacobio-Dynamics. It covers various biological topics in the pharmaceutical and health sciences. A fourth Society journal, the Journal of Health Science, was merged with Biol. Pharm. Bull. in 2012. The main aim of the Society’s journals is to advance the pharmaceutical sciences with research reports, information exchange, and high-quality discussion. The average review time for articles submitted to the journals is around one month for first decision. The complete texts of all of the Society’s journals can be freely accessed through J-STAGE. The Society’s editorial committee hopes that the content of its journals will be useful to your research, and also invites you to submit your own work to the journals.
期刊最新文献
Efficient Loading into and Controlled Release of Lipophilic Compound from Liposomes by Using Cyclodextrin as Novel Trapping Agent. Evaluating the Associated Hyperuricemia Risk with Sodium-Glucose Cotransporter 2 Inhibitors: A Sequence Symmetry Analysis Using the Japanese Administrative Claims Database. Expression Profiles of Brain-Derived Neurotrophic Factor Splice Variants in the Hippocampus of Alzheimer's Disease Model Mouse. Decreased Brain pH Underlies Behavioral and Brain Abnormalities Induced by Chronic Exposure to Glucocorticoids in Mice. Downregulation of Genes for Skeletal Muscle Extracellular Matrix Components by Cisplatin.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1