热处理对霍洛石纳米管的影响:实验与计算相结合的方法

IF 3.4 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Heliyon Pub Date : 2024-10-30 eCollection Date: 2024-11-15 DOI:10.1016/j.heliyon.2024.e39952
Ahmed Abotaleb, Ivan Gladich, Kamal Mroue, Nada Abounahia, Alaa Alkhateeb, Abdulaziz Al-Shammari, Yongfeng Tong, Dema Al-Masri, Alessandro Sinopoli
{"title":"热处理对霍洛石纳米管的影响:实验与计算相结合的方法","authors":"Ahmed Abotaleb, Ivan Gladich, Kamal Mroue, Nada Abounahia, Alaa Alkhateeb, Abdulaziz Al-Shammari, Yongfeng Tong, Dema Al-Masri, Alessandro Sinopoli","doi":"10.1016/j.heliyon.2024.e39952","DOIUrl":null,"url":null,"abstract":"<p><p>Halloysite nanotubes (HNTs) are naturally occurring aluminosilicate minerals, known for their unique tubular structure, which have garnered significant interest for a wide range of applications. This study explores the morphological changes of HNTs when subjected to thermal treatment ranging from 25 °C to 1100 °C using a combination of experimental characterization techniques and molecular dynamics simulations. Techniques such as solid-state NMR (SSNMR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) surface area measurements, and Fourier Transform Infrared Spectroscopy (FT-IR) were employed to analyse the structural evolution. The results reveal two major transitions: the first occurring between 400 and 500 °C, corresponding to the release of intercalated water and partial distortion of the HNT structure, and the second occurring between 900 and 1000 °C, marked by the collapse of the tubular structure and the exposure of alumina on the surface. These findings provide significant insights into the thermal stability of HNTs, informing future applications, especially in high-temperature environments.</p>","PeriodicalId":12894,"journal":{"name":"Heliyon","volume":"10 21","pages":"e39952"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565379/pdf/","citationCount":"0","resultStr":"{\"title\":\"Impact of thermal treatment on halloysite nanotubes: A combined experimental-computational approach.\",\"authors\":\"Ahmed Abotaleb, Ivan Gladich, Kamal Mroue, Nada Abounahia, Alaa Alkhateeb, Abdulaziz Al-Shammari, Yongfeng Tong, Dema Al-Masri, Alessandro Sinopoli\",\"doi\":\"10.1016/j.heliyon.2024.e39952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Halloysite nanotubes (HNTs) are naturally occurring aluminosilicate minerals, known for their unique tubular structure, which have garnered significant interest for a wide range of applications. This study explores the morphological changes of HNTs when subjected to thermal treatment ranging from 25 °C to 1100 °C using a combination of experimental characterization techniques and molecular dynamics simulations. Techniques such as solid-state NMR (SSNMR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) surface area measurements, and Fourier Transform Infrared Spectroscopy (FT-IR) were employed to analyse the structural evolution. The results reveal two major transitions: the first occurring between 400 and 500 °C, corresponding to the release of intercalated water and partial distortion of the HNT structure, and the second occurring between 900 and 1000 °C, marked by the collapse of the tubular structure and the exposure of alumina on the surface. These findings provide significant insights into the thermal stability of HNTs, informing future applications, especially in high-temperature environments.</p>\",\"PeriodicalId\":12894,\"journal\":{\"name\":\"Heliyon\",\"volume\":\"10 21\",\"pages\":\"e39952\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565379/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heliyon\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1016/j.heliyon.2024.e39952\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/15 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heliyon","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.heliyon.2024.e39952","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/15 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

霍洛石纳米管(HNTs)是一种天然存在的铝硅酸盐矿物,以其独特的管状结构而闻名,其广泛的应用引起了人们的极大兴趣。本研究采用实验表征技术和分子动力学模拟相结合的方法,探讨了 HNTs 在经受 25 °C 至 1100 °C 热处理后的形态变化。我们采用了固态核磁共振 (SSNMR)、X 射线衍射 (XRD)、X 射线光电子能谱 (XPS)、布鲁诺-艾美特-泰勒 (BET) 表面积测量和傅立叶变换红外光谱 (FT-IR) 等技术来分析结构的演变。结果发现了两个主要的转变:第一个转变发生在 400 至 500 ℃ 之间,与夹层水的释放和 HNT 结构的部分变形相对应;第二个转变发生在 900 至 1000 ℃ 之间,以管状结构的崩溃和表面氧化铝的暴露为标志。这些发现为了解 HNT 的热稳定性提供了重要依据,为未来的应用,尤其是在高温环境中的应用提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of thermal treatment on halloysite nanotubes: A combined experimental-computational approach.

Halloysite nanotubes (HNTs) are naturally occurring aluminosilicate minerals, known for their unique tubular structure, which have garnered significant interest for a wide range of applications. This study explores the morphological changes of HNTs when subjected to thermal treatment ranging from 25 °C to 1100 °C using a combination of experimental characterization techniques and molecular dynamics simulations. Techniques such as solid-state NMR (SSNMR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) surface area measurements, and Fourier Transform Infrared Spectroscopy (FT-IR) were employed to analyse the structural evolution. The results reveal two major transitions: the first occurring between 400 and 500 °C, corresponding to the release of intercalated water and partial distortion of the HNT structure, and the second occurring between 900 and 1000 °C, marked by the collapse of the tubular structure and the exposure of alumina on the surface. These findings provide significant insights into the thermal stability of HNTs, informing future applications, especially in high-temperature environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Heliyon
Heliyon MULTIDISCIPLINARY SCIENCES-
CiteScore
4.50
自引率
2.50%
发文量
2793
期刊介绍: Heliyon is an all-science, open access journal that is part of the Cell Press family. Any paper reporting scientifically accurate and valuable research, which adheres to accepted ethical and scientific publishing standards, will be considered for publication. Our growing team of dedicated section editors, along with our in-house team, handle your paper and manage the publication process end-to-end, giving your research the editorial support it deserves.
期刊最新文献
An explainable deep learning approach for stock market trend prediction. Burden of active tuberculosis among patients with diabetes mellitus in Sub-Saharan Africa: A systematic review and meta-analysis. Endothelial-to-mesenchymal transition in the tumor microenvironment: Roles of transforming growth factor-β and matrix metalloproteins. Frequency-dependent effects of superimposed NMES on spinal excitability in upper and lower limb muscles. Influence of protein in low paste viscosities of Bambara groundnut flours from heat-treated Bambara groundnut seeds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1