Cha Yang, Cynthia Leifer, Jan Lammerding, Fenghua Hu
{"title":"通过细胞膜 DNA 积累调节 TAR DNA 结合蛋白 43 (TDP-43) 的平衡。","authors":"Cha Yang, Cynthia Leifer, Jan Lammerding, Fenghua Hu","doi":"10.1016/j.jbc.2024.107999","DOIUrl":null,"url":null,"abstract":"<p><p>TAR DNA-binding protein 43 (TDP-43) is a DNA/RNA binding protein predominantly localized in the nucleus under physiological conditions. TDP-43 proteinopathy, characterized by cytoplasmic aggregation and nuclear loss, is associated with many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Thus it is crucial to understand the molecular mechanism regulating TDP-43 homeostasis. Here, we show that the uptake of oligodeoxynucleotides (ODNs) induces reversible TDP-43 cytoplasmic puncta formation in both neurons and glia and ODNs facilitate the liquid-liquid phase separation of TDP-43 in vitro. Importantly, persistent accumulation of DNA in the cytoplasm leads to nuclear depletion of TDP-43 and enhanced production of a short isoform of TDP-43 (sTDP-43). In addition, in response to ODN uptake, the nuclear import receptor karyopherin subunit β1 (KPNB1) is sequestered in the cytosolic TDP-43 puncta. ALS-linked Q331K mutation decreases the dynamics of cytoplasmic TDP-43 puncta and increases the levels of sTDP-43. Moreover, the TDP-43 cytoplasmic puncta are induced by DNA damage and by impaired nuclear envelope integrity due to Lamin A/C deficiency. In summary, our data support that abnormal DNA accumulation in the cytoplasm may be one of the key mechanisms leading to TDP-43 proteinopathy and provides novel insights into molecular mechanisms of ALS caused by TDP-43 mutations.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"107999"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulation of TAR DNA binding protein 43 (TDP-43) homeostasis by cytosolic DNA accumulation.\",\"authors\":\"Cha Yang, Cynthia Leifer, Jan Lammerding, Fenghua Hu\",\"doi\":\"10.1016/j.jbc.2024.107999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>TAR DNA-binding protein 43 (TDP-43) is a DNA/RNA binding protein predominantly localized in the nucleus under physiological conditions. TDP-43 proteinopathy, characterized by cytoplasmic aggregation and nuclear loss, is associated with many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Thus it is crucial to understand the molecular mechanism regulating TDP-43 homeostasis. Here, we show that the uptake of oligodeoxynucleotides (ODNs) induces reversible TDP-43 cytoplasmic puncta formation in both neurons and glia and ODNs facilitate the liquid-liquid phase separation of TDP-43 in vitro. Importantly, persistent accumulation of DNA in the cytoplasm leads to nuclear depletion of TDP-43 and enhanced production of a short isoform of TDP-43 (sTDP-43). In addition, in response to ODN uptake, the nuclear import receptor karyopherin subunit β1 (KPNB1) is sequestered in the cytosolic TDP-43 puncta. ALS-linked Q331K mutation decreases the dynamics of cytoplasmic TDP-43 puncta and increases the levels of sTDP-43. Moreover, the TDP-43 cytoplasmic puncta are induced by DNA damage and by impaired nuclear envelope integrity due to Lamin A/C deficiency. In summary, our data support that abnormal DNA accumulation in the cytoplasm may be one of the key mechanisms leading to TDP-43 proteinopathy and provides novel insights into molecular mechanisms of ALS caused by TDP-43 mutations.</p>\",\"PeriodicalId\":15140,\"journal\":{\"name\":\"Journal of Biological Chemistry\",\"volume\":\" \",\"pages\":\"107999\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jbc.2024.107999\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2024.107999","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
TAR DNA 结合蛋白 43(TDP-43)是一种 DNA/RNA 结合蛋白,在生理条件下主要定位于细胞核。TDP-43蛋白病变以胞质聚集和核丢失为特征,与许多神经退行性疾病有关,包括肌萎缩性脊髓侧索硬化症(ALS)和额颞叶变性(FTLD)。因此,了解调节 TDP-43 平衡的分子机制至关重要。在这里,我们发现寡去氧核苷酸(ODNs)的摄取会诱导神经元和胶质细胞中可逆的TDP-43胞质点阵形成,并且ODNs会促进体外TDP-43的液-液相分离。重要的是,DNA 在细胞质中的持续积累会导致 TDP-43 的核耗竭和 TDP-43 短异构体(sTDP-43)的生成增强。此外,在摄取 ODN 时,核导入受体 karyopherin 亚基 β1(KPNB1)会被封闭在细胞质 TDP-43 点中。与 ALS 相关的 Q331K 突变降低了细胞质 TDP-43 点的动态性,增加了 sTDP-43 的水平。此外,DNA损伤和Lamin A/C缺乏导致的核包膜完整性受损也会诱发TDP-43胞质点状突起。总之,我们的数据支持细胞质中DNA的异常积累可能是导致TDP-43蛋白病的关键机制之一,并为TDP-43突变导致的ALS的分子机制提供了新的见解。
Regulation of TAR DNA binding protein 43 (TDP-43) homeostasis by cytosolic DNA accumulation.
TAR DNA-binding protein 43 (TDP-43) is a DNA/RNA binding protein predominantly localized in the nucleus under physiological conditions. TDP-43 proteinopathy, characterized by cytoplasmic aggregation and nuclear loss, is associated with many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Thus it is crucial to understand the molecular mechanism regulating TDP-43 homeostasis. Here, we show that the uptake of oligodeoxynucleotides (ODNs) induces reversible TDP-43 cytoplasmic puncta formation in both neurons and glia and ODNs facilitate the liquid-liquid phase separation of TDP-43 in vitro. Importantly, persistent accumulation of DNA in the cytoplasm leads to nuclear depletion of TDP-43 and enhanced production of a short isoform of TDP-43 (sTDP-43). In addition, in response to ODN uptake, the nuclear import receptor karyopherin subunit β1 (KPNB1) is sequestered in the cytosolic TDP-43 puncta. ALS-linked Q331K mutation decreases the dynamics of cytoplasmic TDP-43 puncta and increases the levels of sTDP-43. Moreover, the TDP-43 cytoplasmic puncta are induced by DNA damage and by impaired nuclear envelope integrity due to Lamin A/C deficiency. In summary, our data support that abnormal DNA accumulation in the cytoplasm may be one of the key mechanisms leading to TDP-43 proteinopathy and provides novel insights into molecular mechanisms of ALS caused by TDP-43 mutations.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.