噬菌体编码的适存因子的抗菌活性被两种同源免疫蛋白中和。

IF 4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Biological Chemistry Pub Date : 2024-11-15 DOI:10.1016/j.jbc.2024.108007
Andrea G Alexei, Nathan P Bullen, Stephen R Garrett, David Sychantha, John C Whitney
{"title":"噬菌体编码的适存因子的抗菌活性被两种同源免疫蛋白中和。","authors":"Andrea G Alexei, Nathan P Bullen, Stephen R Garrett, David Sychantha, John C Whitney","doi":"10.1016/j.jbc.2024.108007","DOIUrl":null,"url":null,"abstract":"<p><p>The human gastrointestinal tract is a competitive environment inhabited by dense polymicrobial communities. Bacteroides, a genus of Gram-negative anaerobes, are prominent members of this ecological niche. Bacteroides spp. uses a repertoire of mechanisms to compete for resources within this environment such as the delivery of proteinaceous toxins into neighbouring competitor bacteria and the ability to consume unique metabolites available in the gut. In recent work, Bacteroides stercoris gut colonization was linked to the activity of a prophage-encoded ADP-ribosyltransferase, which was found to stimulate the release of the metabolite inosine from host epithelial cells. This fitness factor, termed Bxa, shares a similar genomic arrangement to bacterial toxins encoded within interbacterial antagonism loci. Here, we report that Bxa also possesses antibacterial ADP-ribosyltransferase activity, raising the question of how Bxa-producing bacteria resist intoxication prior to Bxa's release from cells. To this end, we identify two cognate immunity proteins, Bsi and BAH, that neutralize Bxa's antibacterial activity using distinct mechanisms. BAH acts as an enzymatic immunity protein that reverses Bxa ADP-ribosylation whereas Bsi physically interacts with Bxa and blocks its ADP-ribosylation activity. We also find that the N-terminal domain of Bxa is dispensable for toxicity and homologous domains in other bacteria are fused to a diverse array of predicted toxins found throughout the Bacteroidaceae, suggesting that Bxa belongs to a broader prophage encoded polymorphic toxin system. Overall, this work shows that Bxa is a promiscuous ADP-ribosyltransferase and that B. stercoris possesses mechanisms to protect itself from the toxic activity of this prophage encoded fitness factor.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108007"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The antibacterial activity of a prophage-encoded fitness factor is neutralized by two cognate immunity proteins.\",\"authors\":\"Andrea G Alexei, Nathan P Bullen, Stephen R Garrett, David Sychantha, John C Whitney\",\"doi\":\"10.1016/j.jbc.2024.108007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The human gastrointestinal tract is a competitive environment inhabited by dense polymicrobial communities. Bacteroides, a genus of Gram-negative anaerobes, are prominent members of this ecological niche. Bacteroides spp. uses a repertoire of mechanisms to compete for resources within this environment such as the delivery of proteinaceous toxins into neighbouring competitor bacteria and the ability to consume unique metabolites available in the gut. In recent work, Bacteroides stercoris gut colonization was linked to the activity of a prophage-encoded ADP-ribosyltransferase, which was found to stimulate the release of the metabolite inosine from host epithelial cells. This fitness factor, termed Bxa, shares a similar genomic arrangement to bacterial toxins encoded within interbacterial antagonism loci. Here, we report that Bxa also possesses antibacterial ADP-ribosyltransferase activity, raising the question of how Bxa-producing bacteria resist intoxication prior to Bxa's release from cells. To this end, we identify two cognate immunity proteins, Bsi and BAH, that neutralize Bxa's antibacterial activity using distinct mechanisms. BAH acts as an enzymatic immunity protein that reverses Bxa ADP-ribosylation whereas Bsi physically interacts with Bxa and blocks its ADP-ribosylation activity. We also find that the N-terminal domain of Bxa is dispensable for toxicity and homologous domains in other bacteria are fused to a diverse array of predicted toxins found throughout the Bacteroidaceae, suggesting that Bxa belongs to a broader prophage encoded polymorphic toxin system. Overall, this work shows that Bxa is a promiscuous ADP-ribosyltransferase and that B. stercoris possesses mechanisms to protect itself from the toxic activity of this prophage encoded fitness factor.</p>\",\"PeriodicalId\":15140,\"journal\":{\"name\":\"Journal of Biological Chemistry\",\"volume\":\" \",\"pages\":\"108007\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jbc.2024.108007\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2024.108007","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人类胃肠道是一个多微生物群落密集的竞争环境。革兰氏阴性厌氧菌中的乳杆菌属是这一生态位中的重要成员。Bacteroides 菌属利用一系列机制在这种环境中争夺资源,例如向邻近的竞争细菌释放蛋白质毒素,以及消耗肠道中独特的代谢物。在最近的研究中,发现斯特氏乳杆菌的肠道定殖与噬菌体编码的 ADP 核糖基转移酶的活性有关,该酶可刺激宿主上皮细胞释放代谢物肌苷。这种被称为 Bxa 的适存因子与细菌间拮抗基因座内编码的细菌毒素有着相似的基因组排列。在这里,我们报告了 Bxa 还具有抗菌 ADP 核糖基转移酶活性,这就提出了一个问题:在 Bxa 从细胞释放之前,产生 Bxa 的细菌是如何抵抗中毒的?为此,我们确定了两种同源免疫蛋白 Bsi 和 BAH,它们通过不同的机制中和 Bxa 的抗菌活性。BAH 是一种酶免疫蛋白,能逆转 Bxa 的 ADP-核糖基化,而 Bsi 则与 Bxa 发生物理作用,阻断其 ADP-核糖基化活性。我们还发现,Bxa 的 N 端结构域对于毒性来说是不可或缺的,而其他细菌中的同源结构域与整个类杆菌科中的各种预测毒素融合在一起,这表明 Bxa 属于更广泛的噬菌体编码多态毒素系统。总之,这项研究表明,Bxa 是一种杂合的 ADP 核糖基转移酶,而 B. stercoris 具有保护自身免受这种噬菌体编码的健康因子的毒性活动影响的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The antibacterial activity of a prophage-encoded fitness factor is neutralized by two cognate immunity proteins.

The human gastrointestinal tract is a competitive environment inhabited by dense polymicrobial communities. Bacteroides, a genus of Gram-negative anaerobes, are prominent members of this ecological niche. Bacteroides spp. uses a repertoire of mechanisms to compete for resources within this environment such as the delivery of proteinaceous toxins into neighbouring competitor bacteria and the ability to consume unique metabolites available in the gut. In recent work, Bacteroides stercoris gut colonization was linked to the activity of a prophage-encoded ADP-ribosyltransferase, which was found to stimulate the release of the metabolite inosine from host epithelial cells. This fitness factor, termed Bxa, shares a similar genomic arrangement to bacterial toxins encoded within interbacterial antagonism loci. Here, we report that Bxa also possesses antibacterial ADP-ribosyltransferase activity, raising the question of how Bxa-producing bacteria resist intoxication prior to Bxa's release from cells. To this end, we identify two cognate immunity proteins, Bsi and BAH, that neutralize Bxa's antibacterial activity using distinct mechanisms. BAH acts as an enzymatic immunity protein that reverses Bxa ADP-ribosylation whereas Bsi physically interacts with Bxa and blocks its ADP-ribosylation activity. We also find that the N-terminal domain of Bxa is dispensable for toxicity and homologous domains in other bacteria are fused to a diverse array of predicted toxins found throughout the Bacteroidaceae, suggesting that Bxa belongs to a broader prophage encoded polymorphic toxin system. Overall, this work shows that Bxa is a promiscuous ADP-ribosyltransferase and that B. stercoris possesses mechanisms to protect itself from the toxic activity of this prophage encoded fitness factor.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biological Chemistry
Journal of Biological Chemistry Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
4.20%
发文量
1233
期刊介绍: The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.
期刊最新文献
PARP14 is a writer, reader, and eraser of mono-ADP-ribosylation. Biophysical characterization of the dystrophin C-terminal domain: Dystrophin interacts differentially with dystrobrevin isoforms. The CTR hydrophobic residues of Nem1 catalytic subunit are required to form a protein phosphatase complex with Spo7 to activate yeast Pah1 PA phosphatase. The Hsc70 system maintains the synaptic SNARE protein SNAP-25 in an assembly-competent state and delays its aggregation. Impaired branched chain amino acid (BCAA) catabolism during adipocyte differentiation decreases glycolytic flux.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1