{"title":"带薄膜冷却的高超音速光学窗口的航空光学效应研究进展。","authors":"Shihe Yi, Haolin Ding, Suyiming Luo, Xiaobin Sun, Zihao Xia","doi":"10.1038/s41377-024-01596-x","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, the demand for optical imaging and detection in hypersonic aircraft has been on the rise. The high-temperature and high-pressure compressed flow field near airborne optoelectronic devices creates significant interference with light transmission, known as hypersonic aero-optical effects. This effect has emerged as a key technological challenge, limiting hypersonic optical imaging and detection capabilities. This article focuses on introducing the thermal effects and optical transmission effects of hypersonic aero-optical effects, as along with corresponding suppression techniques. In addition, this article critically reviews and succinctly summarizes the advancements made in hypersonic aero-optical effects testing technology, while also delineating avenues for future research needs in this field. In conclusion, there is an urgent call for further exploration into the study of aero-optical effects under conditions characterized by high Mach, high enthalpy, and high Reynolds number in the future.</p>","PeriodicalId":18093,"journal":{"name":"Light, science & applications","volume":"13 1","pages":"310"},"PeriodicalIF":19.4000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570696/pdf/","citationCount":"0","resultStr":"{\"title\":\"Research progress on aero-optical effects of hypersonic optical window with film cooling.\",\"authors\":\"Shihe Yi, Haolin Ding, Suyiming Luo, Xiaobin Sun, Zihao Xia\",\"doi\":\"10.1038/s41377-024-01596-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent years, the demand for optical imaging and detection in hypersonic aircraft has been on the rise. The high-temperature and high-pressure compressed flow field near airborne optoelectronic devices creates significant interference with light transmission, known as hypersonic aero-optical effects. This effect has emerged as a key technological challenge, limiting hypersonic optical imaging and detection capabilities. This article focuses on introducing the thermal effects and optical transmission effects of hypersonic aero-optical effects, as along with corresponding suppression techniques. In addition, this article critically reviews and succinctly summarizes the advancements made in hypersonic aero-optical effects testing technology, while also delineating avenues for future research needs in this field. In conclusion, there is an urgent call for further exploration into the study of aero-optical effects under conditions characterized by high Mach, high enthalpy, and high Reynolds number in the future.</p>\",\"PeriodicalId\":18093,\"journal\":{\"name\":\"Light, science & applications\",\"volume\":\"13 1\",\"pages\":\"310\"},\"PeriodicalIF\":19.4000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570696/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Light, science & applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41377-024-01596-x\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light, science & applications","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41377-024-01596-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Research progress on aero-optical effects of hypersonic optical window with film cooling.
In recent years, the demand for optical imaging and detection in hypersonic aircraft has been on the rise. The high-temperature and high-pressure compressed flow field near airborne optoelectronic devices creates significant interference with light transmission, known as hypersonic aero-optical effects. This effect has emerged as a key technological challenge, limiting hypersonic optical imaging and detection capabilities. This article focuses on introducing the thermal effects and optical transmission effects of hypersonic aero-optical effects, as along with corresponding suppression techniques. In addition, this article critically reviews and succinctly summarizes the advancements made in hypersonic aero-optical effects testing technology, while also delineating avenues for future research needs in this field. In conclusion, there is an urgent call for further exploration into the study of aero-optical effects under conditions characterized by high Mach, high enthalpy, and high Reynolds number in the future.
期刊介绍:
Light: Science & Applications is an open-access, fully peer-reviewed publication.It publishes high-quality optics and photonics research globally, covering fundamental research and important issues in engineering and applied sciences related to optics and photonics.