人工智能:儿科放射医师入门指南。

IF 2.1 3区 医学 Q2 PEDIATRICS Pediatric Radiology Pub Date : 2024-11-18 DOI:10.1007/s00247-024-06098-x
Marcelo Straus Takahashi, Lane F Donnelly, Selima Siala
{"title":"人工智能:儿科放射医师入门指南。","authors":"Marcelo Straus Takahashi, Lane F Donnelly, Selima Siala","doi":"10.1007/s00247-024-06098-x","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) is increasingly recognized for its transformative potential in radiology; yet, its application in pediatric radiology is relatively limited when compared to the whole of radiology. This manuscript introduces pediatric radiologists to essential AI concepts, including topics such as use case, data science, machine learning, deep learning, natural language processing, and generative AI as well as basics of AI training and validating. We outline the unique challenges of applying AI in pediatric imaging, such as data scarcity and distinct clinical characteristics, and discuss the current uses of AI in pediatric radiology, including both image interpretive and non-interpretive tasks. With this overview, we aim to equip pediatric radiologists with the foundational knowledge needed to engage with AI tools and inspire further exploration and innovation in the field.</p>","PeriodicalId":19755,"journal":{"name":"Pediatric Radiology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence: a primer for pediatric radiologists.\",\"authors\":\"Marcelo Straus Takahashi, Lane F Donnelly, Selima Siala\",\"doi\":\"10.1007/s00247-024-06098-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Artificial intelligence (AI) is increasingly recognized for its transformative potential in radiology; yet, its application in pediatric radiology is relatively limited when compared to the whole of radiology. This manuscript introduces pediatric radiologists to essential AI concepts, including topics such as use case, data science, machine learning, deep learning, natural language processing, and generative AI as well as basics of AI training and validating. We outline the unique challenges of applying AI in pediatric imaging, such as data scarcity and distinct clinical characteristics, and discuss the current uses of AI in pediatric radiology, including both image interpretive and non-interpretive tasks. With this overview, we aim to equip pediatric radiologists with the foundational knowledge needed to engage with AI tools and inspire further exploration and innovation in the field.</p>\",\"PeriodicalId\":19755,\"journal\":{\"name\":\"Pediatric Radiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pediatric Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00247-024-06098-x\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PEDIATRICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pediatric Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00247-024-06098-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PEDIATRICS","Score":null,"Total":0}
引用次数: 0

摘要

越来越多的人认识到人工智能(AI)在放射学中的变革潜力;然而,与整个放射学相比,人工智能在儿科放射学中的应用相对有限。本手稿向儿科放射医师介绍人工智能的基本概念,包括用例、数据科学、机器学习、深度学习、自然语言处理和生成式人工智能等主题,以及人工智能训练和验证的基础知识。我们概述了在儿科成像中应用人工智能的独特挑战,如数据稀缺和独特的临床特征,并讨论了人工智能在儿科放射学中的当前应用,包括图像解释和非解释任务。通过这一概述,我们旨在为儿科放射医师提供使用人工智能工具所需的基础知识,并激励他们在该领域进一步探索和创新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Artificial intelligence: a primer for pediatric radiologists.

Artificial intelligence (AI) is increasingly recognized for its transformative potential in radiology; yet, its application in pediatric radiology is relatively limited when compared to the whole of radiology. This manuscript introduces pediatric radiologists to essential AI concepts, including topics such as use case, data science, machine learning, deep learning, natural language processing, and generative AI as well as basics of AI training and validating. We outline the unique challenges of applying AI in pediatric imaging, such as data scarcity and distinct clinical characteristics, and discuss the current uses of AI in pediatric radiology, including both image interpretive and non-interpretive tasks. With this overview, we aim to equip pediatric radiologists with the foundational knowledge needed to engage with AI tools and inspire further exploration and innovation in the field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pediatric Radiology
Pediatric Radiology 医学-核医学
CiteScore
4.40
自引率
17.40%
发文量
300
审稿时长
3-6 weeks
期刊介绍: Official Journal of the European Society of Pediatric Radiology, the Society for Pediatric Radiology and the Asian and Oceanic Society for Pediatric Radiology Pediatric Radiology informs its readers of new findings and progress in all areas of pediatric imaging and in related fields. This is achieved by a blend of original papers, complemented by reviews that set out the present state of knowledge in a particular area of the specialty or summarize specific topics in which discussion has led to clear conclusions. Advances in technology, methodology, apparatus and auxiliary equipment are presented, and modifications of standard techniques are described. Manuscripts submitted for publication must contain a statement to the effect that all human studies have been reviewed by the appropriate ethics committee and have therefore been performed in accordance with the ethical standards laid down in an appropriate version of the 1964 Declaration of Helsinki. It should also be stated clearly in the text that all persons gave their informed consent prior to their inclusion in the study. Details that might disclose the identity of the subjects under study should be omitted.
期刊最新文献
Rapid and motion-robust pediatric brain imaging: T2-weighted turbo-spin-echo PROPELLER acquisition with compressed sensing. The many faces of pediatric hydatid disease: a pictorial review. Ultrasound evaluation of superficial lesions caused by ectoparasites in children. Renal vascular involvement in neurofibromatosis type 1. Quantified small bowel motility assessment on magnetic resonance enterography in paediatric inflammatory bowel disease - does it reflect clinical response?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1