从原代皮肤细胞培养物中分离人类成纤维细胞的高效方案:应用于瘢痕疙瘩、增生性疤痕和正常皮肤活检。

IF 2.5 Q3 BIOCHEMICAL RESEARCH METHODS Biology Methods and Protocols Pub Date : 2024-10-29 eCollection Date: 2024-01-01 DOI:10.1093/biomethods/bpae082
Sri Suciati Ningsih, Sri Widia A Jusman, Rahimi Syaidah, Raisa Nauli, Fadilah Fadilah
{"title":"从原代皮肤细胞培养物中分离人类成纤维细胞的高效方案:应用于瘢痕疙瘩、增生性疤痕和正常皮肤活检。","authors":"Sri Suciati Ningsih, Sri Widia A Jusman, Rahimi Syaidah, Raisa Nauli, Fadilah Fadilah","doi":"10.1093/biomethods/bpae082","DOIUrl":null,"url":null,"abstract":"<p><p>This protocol introduces a streamlined and efficient method for isolating human fibroblast from skin primary cell culture with a specific focus on its application to keloid, hypertrophic scar, and normal skin biopsies. Additionally, the absence of suitable animal models for keloid and hypertrophic scar has led preclinical research to rely on in vitro studies using primary cell cultures. This approach addresses the challenges of existing protocols in terms of time, cost, equipment, and technical expertise required. The method involves derivation, culture, and characterization analysis including cell proliferation, migration, and fibroblastic marker (Vimentin, CD90, CD73, and CD105) expression. Our study yielded high amounts of fibroblast from tested skin explants while maintaining their in vivo-like characteristics and behaviour. Immunostaining assay confirmed that the cultivated fibroblast was positively expressed Vimentin. Flowcytometry results showed high expression of CD90 and CD73 while relatively showing lower expression of CD105. Fibroblast derived from keloid tissue showed the highest rate of proliferation and migration ability compared to the other samples. These findings suggest an efficient and reproducible technique to cultivate high qualified fibroblast from human skin in normal or pathological condition, particularly for keloid and hypertrophic scar. The application of this protocol provides a foundation for further studies to investigate the progression and potential intervention of aberrant fibrotic dermatological disorder, in vitro.</p>","PeriodicalId":36528,"journal":{"name":"Biology Methods and Protocols","volume":"9 1","pages":"bpae082"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565194/pdf/","citationCount":"0","resultStr":"{\"title\":\"Efficient protocol for isolating human fibroblast from primary skin cell cultures: application to keloid, hypertrophic scar, and normal skin biopsies.\",\"authors\":\"Sri Suciati Ningsih, Sri Widia A Jusman, Rahimi Syaidah, Raisa Nauli, Fadilah Fadilah\",\"doi\":\"10.1093/biomethods/bpae082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This protocol introduces a streamlined and efficient method for isolating human fibroblast from skin primary cell culture with a specific focus on its application to keloid, hypertrophic scar, and normal skin biopsies. Additionally, the absence of suitable animal models for keloid and hypertrophic scar has led preclinical research to rely on in vitro studies using primary cell cultures. This approach addresses the challenges of existing protocols in terms of time, cost, equipment, and technical expertise required. The method involves derivation, culture, and characterization analysis including cell proliferation, migration, and fibroblastic marker (Vimentin, CD90, CD73, and CD105) expression. Our study yielded high amounts of fibroblast from tested skin explants while maintaining their in vivo-like characteristics and behaviour. Immunostaining assay confirmed that the cultivated fibroblast was positively expressed Vimentin. Flowcytometry results showed high expression of CD90 and CD73 while relatively showing lower expression of CD105. Fibroblast derived from keloid tissue showed the highest rate of proliferation and migration ability compared to the other samples. These findings suggest an efficient and reproducible technique to cultivate high qualified fibroblast from human skin in normal or pathological condition, particularly for keloid and hypertrophic scar. The application of this protocol provides a foundation for further studies to investigate the progression and potential intervention of aberrant fibrotic dermatological disorder, in vitro.</p>\",\"PeriodicalId\":36528,\"journal\":{\"name\":\"Biology Methods and Protocols\",\"volume\":\"9 1\",\"pages\":\"bpae082\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565194/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology Methods and Protocols\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/biomethods/bpae082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Methods and Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/biomethods/bpae082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

本方案介绍了一种从皮肤原代细胞培养物中分离人类成纤维细胞的简化高效方法,重点是将其应用于瘢痕疙瘩、增生性瘢痕和正常皮肤活检。此外,由于缺乏瘢痕疙瘩和增生性瘢痕的合适动物模型,临床前研究只能依赖使用原代细胞培养物进行体外研究。这种方法解决了现有方案在时间、成本、设备和所需专业技术方面的难题。该方法涉及衍生、培养和特征分析,包括细胞增殖、迁移和成纤维标志物(Vimentin、CD90、CD73 和 CD105)表达。我们的研究从测试的皮肤外植体中获得了大量成纤维细胞,同时保持了它们的活体特征和行为。免疫染色试验证实,培养的成纤维细胞正表达波形蛋白。流式细胞术结果显示,CD90 和 CD73 的表达量较高,而 CD105 的表达量相对较低。与其他样本相比,来自瘢痕组织的成纤维细胞显示出最高的增殖率和迁移能力。这些研究结果表明,从正常或病理状态下的人体皮肤中培养优质成纤维细胞,特别是瘢痕疙瘩和增生性瘢痕,是一种高效且可重复的技术。该方案的应用为进一步研究异常纤维化皮肤病的进展和潜在干预措施奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient protocol for isolating human fibroblast from primary skin cell cultures: application to keloid, hypertrophic scar, and normal skin biopsies.

This protocol introduces a streamlined and efficient method for isolating human fibroblast from skin primary cell culture with a specific focus on its application to keloid, hypertrophic scar, and normal skin biopsies. Additionally, the absence of suitable animal models for keloid and hypertrophic scar has led preclinical research to rely on in vitro studies using primary cell cultures. This approach addresses the challenges of existing protocols in terms of time, cost, equipment, and technical expertise required. The method involves derivation, culture, and characterization analysis including cell proliferation, migration, and fibroblastic marker (Vimentin, CD90, CD73, and CD105) expression. Our study yielded high amounts of fibroblast from tested skin explants while maintaining their in vivo-like characteristics and behaviour. Immunostaining assay confirmed that the cultivated fibroblast was positively expressed Vimentin. Flowcytometry results showed high expression of CD90 and CD73 while relatively showing lower expression of CD105. Fibroblast derived from keloid tissue showed the highest rate of proliferation and migration ability compared to the other samples. These findings suggest an efficient and reproducible technique to cultivate high qualified fibroblast from human skin in normal or pathological condition, particularly for keloid and hypertrophic scar. The application of this protocol provides a foundation for further studies to investigate the progression and potential intervention of aberrant fibrotic dermatological disorder, in vitro.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biology Methods and Protocols
Biology Methods and Protocols Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
CiteScore
3.80
自引率
2.80%
发文量
28
审稿时长
19 weeks
期刊最新文献
Robust RNA secondary structure prediction with a mixture of deep learning and physics-based experts. Real time-PCR a diagnostic tool for reporting copy number variation and relative gene-expression changes in pediatric B-cell acute lymphoblastic leukemia-a pilot study. A cognitive and sensory approach based on workshops using the zebrafish model promotes the discovery of life sciences in the classroom. An efficient injection protocol for Drosophila larvae. Protocol for obtaining doubled haploids in isolated microspore culture in vitro for poorly responsive genotypes of brassicaceae family.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1