Leonidas E Bantis, Benjamin Brewer, Christos T Nakas, Benjamin Reiser
{"title":"基于 Box-Cox 的受体工作特征曲线的统计推断。","authors":"Leonidas E Bantis, Benjamin Brewer, Christos T Nakas, Benjamin Reiser","doi":"10.1002/sim.10252","DOIUrl":null,"url":null,"abstract":"<p><p>Receiver operating characteristic (ROC) curve analysis is widely used in evaluating the effectiveness of a diagnostic test/biomarker or classifier score. A parametric approach for statistical inference on ROC curves based on a Box-Cox transformation to normality has frequently been discussed in the literature. Many investigators have highlighted the difficulty of taking into account the variability of the estimated transformation parameter when carrying out such an analysis. This variability is often ignored and inferences are made by considering the estimated transformation parameter as fixed and known. In this paper, we will review the literature discussing the use of the Box-Cox transformation for ROC curves and the methodology for accounting for the estimation of the Box-Cox transformation parameter in the context of ROC analysis, and detail its application to a number of problems. We present a general framework for inference on any functional of interest, including common measures such as the AUC, the Youden index, and the sensitivity at a given specificity (and vice versa). We further developed a new R package (named 'rocbc') that carries out all discussed approaches and is available in CRAN.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical Inference for Box-Cox based Receiver Operating Characteristic Curves.\",\"authors\":\"Leonidas E Bantis, Benjamin Brewer, Christos T Nakas, Benjamin Reiser\",\"doi\":\"10.1002/sim.10252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Receiver operating characteristic (ROC) curve analysis is widely used in evaluating the effectiveness of a diagnostic test/biomarker or classifier score. A parametric approach for statistical inference on ROC curves based on a Box-Cox transformation to normality has frequently been discussed in the literature. Many investigators have highlighted the difficulty of taking into account the variability of the estimated transformation parameter when carrying out such an analysis. This variability is often ignored and inferences are made by considering the estimated transformation parameter as fixed and known. In this paper, we will review the literature discussing the use of the Box-Cox transformation for ROC curves and the methodology for accounting for the estimation of the Box-Cox transformation parameter in the context of ROC analysis, and detail its application to a number of problems. We present a general framework for inference on any functional of interest, including common measures such as the AUC, the Youden index, and the sensitivity at a given specificity (and vice versa). We further developed a new R package (named 'rocbc') that carries out all discussed approaches and is available in CRAN.</p>\",\"PeriodicalId\":21879,\"journal\":{\"name\":\"Statistics in Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/sim.10252\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.10252","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Statistical Inference for Box-Cox based Receiver Operating Characteristic Curves.
Receiver operating characteristic (ROC) curve analysis is widely used in evaluating the effectiveness of a diagnostic test/biomarker or classifier score. A parametric approach for statistical inference on ROC curves based on a Box-Cox transformation to normality has frequently been discussed in the literature. Many investigators have highlighted the difficulty of taking into account the variability of the estimated transformation parameter when carrying out such an analysis. This variability is often ignored and inferences are made by considering the estimated transformation parameter as fixed and known. In this paper, we will review the literature discussing the use of the Box-Cox transformation for ROC curves and the methodology for accounting for the estimation of the Box-Cox transformation parameter in the context of ROC analysis, and detail its application to a number of problems. We present a general framework for inference on any functional of interest, including common measures such as the AUC, the Youden index, and the sensitivity at a given specificity (and vice versa). We further developed a new R package (named 'rocbc') that carries out all discussed approaches and is available in CRAN.
期刊介绍:
The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.